可再生能源发电的消纳是能源利用低碳转型的关键问题,储能是平抑可再生能源发电波动的重要手段。在此背景下,针对含先进绝热压缩空气储能(advanced adiabatic compressed air energy storage,AA-CAES)和风电的电力系统,提出风电消纳的...可再生能源发电的消纳是能源利用低碳转型的关键问题,储能是平抑可再生能源发电波动的重要手段。在此背景下,针对含先进绝热压缩空气储能(advanced adiabatic compressed air energy storage,AA-CAES)和风电的电力系统,提出风电消纳的低碳调度方法,并建立能-碳追踪模型追溯负荷侧电能与碳的具体来源。首先,建立了电能-碳流追踪模型,其次,建立了AA-CAES电站运行模型和风电出力模型。之后,以常规机组运行成本、碳排放成本之和最小为优化目标,构建了含AA-CAES与风电的电力系统协同低碳调度模型。最后,以改进的IEEE 30节点系统为例,对AA-CAES/风电协同调度进行了计算与能碳溯源分析。结果表明,AA-CAES电站在电力系统中发挥了重要作用。在低负荷时段,AA-CAES电站主要处于压缩充电状态,储存电能;在高负荷时段,尤其是在风力发电出力不足时,AA-CAES电站通过膨胀放电来提供电能,有效平抑了风电的波动性。并通过能碳溯源分析,清晰地划分出AA-CAES/风电协同作用区域,显示出系统在不同负荷水平下的灵活响应能力。展开更多
随着碳中和目标的推进,综合能源系统(integrated energy system,IES)以其多能耦合、能量梯级利用等优势,逐渐成为能源供应的重要发展方向。在具有差异化用能需求的多功能区IES之间实现协同规划与调度,对提高系统经济性、降低系统碳排放...随着碳中和目标的推进,综合能源系统(integrated energy system,IES)以其多能耦合、能量梯级利用等优势,逐渐成为能源供应的重要发展方向。在具有差异化用能需求的多功能区IES之间实现协同规划与调度,对提高系统经济性、降低系统碳排放有着重要作用。然而,由于碳捕集机组、多类型氢能利用设备等低碳元件的接入以及可再生能源发电的不断增加,随之而来的元件模型非凸性与系统内多类型不确定性对系统规划的影响亟需研究。对此,该文考虑了机组低碳改造和氢能多模式利用低碳特性,提出了一种针对多功能区综合能源系统的不确定性协同规划方法。首先,详细分析了多功能区供/用能特性与多能互补关系,构建了具有分区差异化特征的多功能区设备规划策略。其次,建立了低碳改造后的热电联产机组和氢能多模式利用设备的数学模型,并对其低碳特性进行了分析。基于此,为应对规划周期内系统低碳改造成本的不确定性和短期内可再生能源出力的不确定性,提出了一种混合长-短期不确定性的多功能区IES协同规划模型。通过基于二进制扩展的凸包线性化方法,对所提规划模型中的非线性约束进行凸化,并采用相应的迭代收缩求解算法实现模型的有效求解。最后,通过某实际多功能区IES算例进行仿真,结果验证了所提模型和所用算法的有效性。展开更多
文摘可再生能源发电的消纳是能源利用低碳转型的关键问题,储能是平抑可再生能源发电波动的重要手段。在此背景下,针对含先进绝热压缩空气储能(advanced adiabatic compressed air energy storage,AA-CAES)和风电的电力系统,提出风电消纳的低碳调度方法,并建立能-碳追踪模型追溯负荷侧电能与碳的具体来源。首先,建立了电能-碳流追踪模型,其次,建立了AA-CAES电站运行模型和风电出力模型。之后,以常规机组运行成本、碳排放成本之和最小为优化目标,构建了含AA-CAES与风电的电力系统协同低碳调度模型。最后,以改进的IEEE 30节点系统为例,对AA-CAES/风电协同调度进行了计算与能碳溯源分析。结果表明,AA-CAES电站在电力系统中发挥了重要作用。在低负荷时段,AA-CAES电站主要处于压缩充电状态,储存电能;在高负荷时段,尤其是在风力发电出力不足时,AA-CAES电站通过膨胀放电来提供电能,有效平抑了风电的波动性。并通过能碳溯源分析,清晰地划分出AA-CAES/风电协同作用区域,显示出系统在不同负荷水平下的灵活响应能力。
文摘随着碳中和目标的推进,综合能源系统(integrated energy system,IES)以其多能耦合、能量梯级利用等优势,逐渐成为能源供应的重要发展方向。在具有差异化用能需求的多功能区IES之间实现协同规划与调度,对提高系统经济性、降低系统碳排放有着重要作用。然而,由于碳捕集机组、多类型氢能利用设备等低碳元件的接入以及可再生能源发电的不断增加,随之而来的元件模型非凸性与系统内多类型不确定性对系统规划的影响亟需研究。对此,该文考虑了机组低碳改造和氢能多模式利用低碳特性,提出了一种针对多功能区综合能源系统的不确定性协同规划方法。首先,详细分析了多功能区供/用能特性与多能互补关系,构建了具有分区差异化特征的多功能区设备规划策略。其次,建立了低碳改造后的热电联产机组和氢能多模式利用设备的数学模型,并对其低碳特性进行了分析。基于此,为应对规划周期内系统低碳改造成本的不确定性和短期内可再生能源出力的不确定性,提出了一种混合长-短期不确定性的多功能区IES协同规划模型。通过基于二进制扩展的凸包线性化方法,对所提规划模型中的非线性约束进行凸化,并采用相应的迭代收缩求解算法实现模型的有效求解。最后,通过某实际多功能区IES算例进行仿真,结果验证了所提模型和所用算法的有效性。