期刊文献+
共找到11,450篇文章
< 1 2 250 >
每页显示 20 50 100
Tomato Growth Height Prediction Method by Phenotypic Feature Extraction Using Multi-modal Data
1
作者 GONG Yu WANG Ling +3 位作者 ZHAO Rongqiang YOU Haibo ZHOU Mo LIU Jie 《智慧农业(中英文)》 2025年第1期97-110,共14页
[Objective]Accurate prediction of tomato growth height is crucial for optimizing production environments in smart farming.However,current prediction methods predominantly rely on empirical,mechanistic,or learning-base... [Objective]Accurate prediction of tomato growth height is crucial for optimizing production environments in smart farming.However,current prediction methods predominantly rely on empirical,mechanistic,or learning-based models that utilize either images data or environmental data.These methods fail to fully leverage multi-modal data to capture the diverse aspects of plant growth comprehensively.[Methods]To address this limitation,a two-stage phenotypic feature extraction(PFE)model based on deep learning algorithm of recurrent neural network(RNN)and long short-term memory(LSTM)was developed.The model integrated environment and plant information to provide a holistic understanding of the growth process,emploied phenotypic and temporal feature extractors to comprehensively capture both types of features,enabled a deeper understanding of the interaction between tomato plants and their environment,ultimately leading to highly accurate predictions of growth height.[Results and Discussions]The experimental results showed the model's ef‐fectiveness:When predicting the next two days based on the past five days,the PFE-based RNN and LSTM models achieved mean absolute percentage error(MAPE)of 0.81%and 0.40%,respectively,which were significantly lower than the 8.00%MAPE of the large language model(LLM)and 6.72%MAPE of the Transformer-based model.In longer-term predictions,the 10-day prediction for 4 days ahead and the 30-day prediction for 12 days ahead,the PFE-RNN model continued to outperform the other two baseline models,with MAPE of 2.66%and 14.05%,respectively.[Conclusions]The proposed method,which leverages phenotypic-temporal collaboration,shows great potential for intelligent,data-driven management of tomato cultivation,making it a promising approach for enhancing the efficiency and precision of smart tomato planting management. 展开更多
关键词 tomato growth prediction deep learning phenotypic feature extraction multi-modal data recurrent neural net‐work long short-term memory large language model
在线阅读 下载PDF
Feature evaluation and extraction based on neural network in analog circuit fault diagnosis 被引量:16
2
作者 Yuan Haiying Chen Guangju Xie Yongle 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2007年第2期434-437,共4页
Choosing the right characteristic parameter is the key to fault diagnosis in analog circuit. The feature evaluation and extraction methods based on neural network are presented. Parameter evaluation of circuit feature... Choosing the right characteristic parameter is the key to fault diagnosis in analog circuit. The feature evaluation and extraction methods based on neural network are presented. Parameter evaluation of circuit features is realized by training results from neural network; the superior nonlinear mapping capability is competent for extracting fault features which are normalized and compressed subsequently. The complex classification problem on fault pattern recognition in analog circuit is transferred into feature processing stage by feature extraction based on neural network effectively, which improves the diagnosis efficiency. A fault diagnosis illustration validated this method. 展开更多
关键词 Fault diagnosis feature extraction Analog circuit Neural network Principal component analysis.
在线阅读 下载PDF
Improved method for the feature extraction of laser scanner using genetic clustering 被引量:6
3
作者 Yu Jinxia Cai Zixing Duan Zhuohua 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2008年第2期280-285,共6页
Feature extraction of range images provided by ranging sensor is a key issue of pattern recognition. To automatically extract the environmental feature sensed by a 2D ranging sensor laser scanner, an improved method b... Feature extraction of range images provided by ranging sensor is a key issue of pattern recognition. To automatically extract the environmental feature sensed by a 2D ranging sensor laser scanner, an improved method based on genetic clustering VGA-clustering is presented. By integrating the spatial neighbouring information of range data into fuzzy clustering algorithm, a weighted fuzzy clustering algorithm (WFCA) instead of standard clustering algorithm is introduced to realize feature extraction of laser scanner. Aimed at the unknown clustering number in advance, several validation index functions are used to estimate the validity of different clustering algorithms and one validation index is selected as the fitness function of genetic algorithm so as to determine the accurate clustering number automatically. At the same time, an improved genetic algorithm IVGA on the basis of VGA is proposed to solve the local optimum of clustering algorithm, which is implemented by increasing the population diversity and improving the genetic operators of elitist rule to enhance the local search capacity and to quicken the convergence speed. By the comparison with other algorithms, the effectiveness of the algorithm introduced is demonstrated. 展开更多
关键词 laser scanner feature extraction weighted fuzzy clustering validation index genetic algorithm.
在线阅读 下载PDF
Pulse-to-pulse periodic signal sorting features and feature extraction in radar emitter pulse sequences 被引量:5
4
作者 Qiang Guo Zhenshen Qu Changhong Wang 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2010年第3期382-389,共8页
A novel class of periodically changing features hidden in radar pulse sequence environment,named G features,is proposed.Combining fractal theory and Hilbert-Huang transform,the features are extracted using changing ch... A novel class of periodically changing features hidden in radar pulse sequence environment,named G features,is proposed.Combining fractal theory and Hilbert-Huang transform,the features are extracted using changing characteristics of pulse parameters in radar emitter signals.The features can be applied in modern complex electronic warfare environment to address the issue of signal sorting when radar emitter pulse signal parameters severely or even completely overlap.Experiment results show that the proposed feature class and feature extraction method can discriminate periodically changing pulse sequence signal sorting features from radar pulse signal flow with complex variant features,therefore provide a new methodology for signal sorting. 展开更多
关键词 signal sorting fractal geometry Hilbert-Huang transform(HHT) G feature extraction.
在线阅读 下载PDF
Adaptive WNN aerodynamic modeling based on subset KPCA feature extraction 被引量:4
5
作者 孟月波 邹建华 +1 位作者 甘旭升 刘光辉 《Journal of Central South University》 SCIE EI CAS 2013年第4期931-941,共11页
In order to accurately describe the dynamic characteristics of flight vehicles through aerodynamic modeling, an adaptive wavelet neural network (AWNN) aerodynamic modeling method is proposed, based on subset kernel pr... In order to accurately describe the dynamic characteristics of flight vehicles through aerodynamic modeling, an adaptive wavelet neural network (AWNN) aerodynamic modeling method is proposed, based on subset kernel principal components analysis (SKPCA) feature extraction. Firstly, by fuzzy C-means clustering, some samples are selected from the training sample set to constitute a sample subset. Then, the obtained samples subset is used to execute SKPCA for extracting basic features of the training samples. Finally, using the extracted basic features, the AWNN aerodynamic model is established. The experimental results show that, in 50 times repetitive modeling, the modeling ability of the method proposed is better than that of other six methods. It only needs about half the modeling time of KPCA-AWNN under a close prediction accuracy, and can easily determine the model parameters. This enables it to be effective and feasible to construct the aerodynamic modeling for flight vehicles. 展开更多
关键词 WAVELET neural network fuzzy C-means clustering kernel principal components analysis feature extraction aerodynamic modeling
在线阅读 下载PDF
A novel feature extraction method for ship-radiated noise 被引量:6
6
作者 Hong Yang Lu-lu Li +1 位作者 Guo-hui Li Qian-ru Guan 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2022年第4期604-617,共14页
To improve the feature extraction of ship-radiated noise in a complex ocean environment,a novel feature extraction method for ship-radiated noise based on complete ensemble empirical mode decomposition with adaptive s... To improve the feature extraction of ship-radiated noise in a complex ocean environment,a novel feature extraction method for ship-radiated noise based on complete ensemble empirical mode decomposition with adaptive selective noise(CEEMDASN) and refined composite multiscale fluctuation-based dispersion entropy(RCMFDE) is proposed.CEEMDASN is proposed in this paper which takes into account the high frequency intermittent components when decomposing the signal.In addition,RCMFDE is also proposed in this paper which refines the preprocessing process of the original signal based on composite multi-scale theory.Firstly,the original signal is decomposed into several intrinsic mode functions(IMFs)by CEEMDASN.Energy distribution ratio(EDR) and average energy distribution ratio(AEDR) of all IMF components are calculated.Then,the IMF with the minimum difference between EDR and AEDR(MEDR)is selected as characteristic IMF.The RCMFDE of characteristic IMF is estimated as the feature vectors of ship-radiated noise.Finally,these feature vectors are sent to self-organizing map(SOM) for classifying and identifying.The proposed method is applied to the feature extraction of ship-radiated noise.The result shows its effectiveness and universality. 展开更多
关键词 Complete ensemble empirical mode decomposition with adaptive noise Ship-radiated noise feature extraction Classification and recognition
在线阅读 下载PDF
A novel signal feature extraction technology based on empirical wavelet transform and reverse dispersion entropy 被引量:4
7
作者 Yu-xing Li Shang-bin Jiao Xiang Gao 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2021年第5期1625-1635,共11页
Feature extraction is an important part of signal processing,which is significant for signal detection,classification,and recognition.The nonlinear dynamic analysis method can extract the nonlinear characteristics of ... Feature extraction is an important part of signal processing,which is significant for signal detection,classification,and recognition.The nonlinear dynamic analysis method can extract the nonlinear characteristics of signals and is widely used in different fields.Reverse dispersion entropy(RDE)proposed by us recently,as a nonlinear dynamic analysis method,has the advantages of fast computing speed and strong anti-noise ability,which is more suitable for measuring the complexity of signal than traditional permutation entropy(PE)and dispersion entropy(DE).Empirical wavelet transform(EWT),based on the theory of wavelet analysis,can decompose a complex non-stationary signal into a number of empirical wavelet functions(EWFs)with compact support set spectrum,which has better decomposition performance than empirical mode decomposition(EMD)and its improved algorithms.Considering the advantages of RDE and EWT,on the one hand,we introduce EWT into the field of underwater acoustic signal processing and fault diagnosis to improve the signal decomposition accuracy;on the other hand,we use RDE as the features of EWFs to improve the signal separability and stability.Finally,we propose a novel signal feature extraction technology based on EWT and RDE in this paper.Experimental results show that the proposed feature extraction technology can effectively extract the complexity features of actual signals.Moreover,it also has higher distinguishing ability for different types of signals than five latest feature extraction technologies. 展开更多
关键词 feature extraction Empirical mode decomposition Empirical wavelet transform Permutation entropy Reverse dispersion entropy
在线阅读 下载PDF
Novel histogram descriptor for global feature extraction and description 被引量:3
8
作者 张刚 马宗民 +1 位作者 邓立国 徐长明 《Journal of Central South University》 SCIE EI CAS 2010年第3期580-586,共7页
A novel histogram descriptor for global feature extraction and description was presented. Three elementary primitives for a 2×2 pixel grid were defined. The complex primitives were computed by matrix transforms. ... A novel histogram descriptor for global feature extraction and description was presented. Three elementary primitives for a 2×2 pixel grid were defined. The complex primitives were computed by matrix transforms. These primitives and equivalence class were used for an image to compute the feature image that consisted of three elementary primitives. Histogram was used for the transformed image to extract and describe the features. Furthermore, comparisons were made among the novel histogram descriptor, the gray histogram and the edge histogram with regard to feature vector dimension and retrieval performance. The experimental results show that the novel histogram can not only reduce the effect of noise and illumination change, but also compute the feature vector of lower dimension. Furthermore, the system using the novel histogram has better retrieval performance. 展开更多
关键词 feature extraction and description histogram descriptor gray histogram edge histogram
在线阅读 下载PDF
Micro-Doppler feature extraction of micro-rotor UAV under the background of low SNR 被引量:5
9
作者 HE Weikun SUN Jingbo +1 位作者 ZHANG Xinyun LIU Zhenming 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2022年第6期1127-1139,共13页
Micro-Doppler feature extraction of unmanned aerial vehicles(UAVs)is important for their identification and classification.Noise and the motion state of the UAV are the main factors that may affect feature extraction ... Micro-Doppler feature extraction of unmanned aerial vehicles(UAVs)is important for their identification and classification.Noise and the motion state of the UAV are the main factors that may affect feature extraction and estimation precision of the micro-motion parameters.The spectrum of UAV echoes is reconstructed to strengthen the micro-motion feature and reduce the influence of the noise on the condition of low signal to noise ratio(SNR).Then considering the rotor rate variance of UAV in the complex motion state,the cepstrum method is improved to extract the rotation rate of the UAV,and the blade length can be intensively estimated.The experiment results for the simulation data and measured data show that the reconstruction of the spectrum for the UAV echoes is helpful and the relative mean square root error of the rotating speed and blade length estimated by the proposed method can be improved.However,the computation complexity is higher and the heavier computation burden is required. 展开更多
关键词 micro-rotor unmanned aerial vehicle(UAV) low signal to noise ratio(SNR) MICRO-DOPPLER feature extraction parameter estimation
在线阅读 下载PDF
Vibration-based feature extraction of determining dynamic characteristic for engine block low vibration design 被引量:2
10
作者 杜宪峰 李志军 +3 位作者 毕凤荣 张俊红 王霞 邵康 《Journal of Central South University》 SCIE EI CAS 2012年第8期2238-2246,共9页
In order to maintain vibration performances within the limits of the design, a vibration-based feature extraction method for dynamic characteristic using empirical mode decomposition (EMD) and wavelet analysis was p... In order to maintain vibration performances within the limits of the design, a vibration-based feature extraction method for dynamic characteristic using empirical mode decomposition (EMD) and wavelet analysis was proposed. The proposed method was verified experimentally and numerically by implementing the scheme on engine block. In the implementation process, the following steps were identified to be important: 1) EMD technique in order to solve the feature extraction of vibration signals; 2) Vibration measurement for the purpose of confirming the structural weak regions of engine block in experiment; 3) Finite element modeling for the purpose of determining dynamic characteristic in time region and frequency region to affirm the comparability of response character corresponding to improvement schemes; 4) Adopting a feature index oflMF for structural improvement based on EMD and wavelet analysis. The obtained results show that IMF of signal is more sensitive to response character corresponding to improvement schemes. Finally, examination of the results confirms that the proposed vibration-based feature extraction method is very robust, and focuses on the relative merits of modification and full-scale structural optimization of engine, together with the creation of new low-vibration designs. 展开更多
关键词 feature extraction dynamic characteristic finite element model empirical mode decomposition diesel engine block
在线阅读 下载PDF
Seismic signal recognition using improved BP neural network and combined feature extraction method 被引量:1
11
作者 彭朝琴 曹纯 +1 位作者 黄姣英 刘秋生 《Journal of Central South University》 SCIE EI CAS 2014年第5期1898-1906,共9页
Seismic signal is generally employed in moving target monitoring due to its robust characteristic.A recognition method for vehicle and personnel with seismic signal sensing system was proposed based on improved neural... Seismic signal is generally employed in moving target monitoring due to its robust characteristic.A recognition method for vehicle and personnel with seismic signal sensing system was proposed based on improved neural network.For analyzing the seismic signal of the moving objects,the seismic signal of person and vehicle was acquisitioned from the seismic sensor,and then feature vectors were extracted with combined methods after filter processing.Finally,these features were put into the improved BP neural network designed for effective signal classification.Compared with previous ways,it is demonstrated that the proposed system presents higher recognition accuracy and validity based on the experimental results.It also shows the effectiveness of the improved BP neural network. 展开更多
关键词 seismic signal feature extraction BP neural network signal identification
在线阅读 下载PDF
Modified Fourier descriptor for shape feature extraction 被引量:1
12
作者 张刚 马宗民 +1 位作者 牛连强 张纯明 《Journal of Central South University》 SCIE EI CAS 2012年第2期488-495,共8页
A modified Fourier descriptor was presented. Information from a local space can be used more efficiently. After the boundary pixel set of an object was computed, centroid distance approach was used to compute shape si... A modified Fourier descriptor was presented. Information from a local space can be used more efficiently. After the boundary pixel set of an object was computed, centroid distance approach was used to compute shape signature in the local space. A pair of shape signature and boundary pixel gray was used as a point in a feature space. Then, Fourier transform was used for composition of point information in the feature space so that the shape features could be computed. It is proved theoretically that the shape features from modified Fourier descriptors are invariant to translation, rotation, scaling, and change of start point. It is also testified by measuring the retrieval performance of the systems that the shape features from modified Fourier oescriptors are more discriminative than those from other Fourier descriptors. 展开更多
关键词 shape feature extraction Fourier descriptors centroid distance approach
在线阅读 下载PDF
A Fast Feature Extraction Algorithm for Detection of Foreign Fiber in Lint Cotton within a Complex Background 被引量:3
13
作者 QU Xin DING Tian-Huai 《自动化学报》 EI CSCD 北大核心 2010年第6期785-790,共6页
关键词 《自动化学报》 期刊 摘要 编辑部
在线阅读 下载PDF
Image Feature Extraction and Matching of Augmented Solar Images in Space Weather
14
作者 WANG Rui BAO Lili CAI Yanxia 《空间科学学报》 CAS CSCD 北大核心 2023年第5期840-852,共13页
Augmented solar images were used to research the adaptability of four representative image extraction and matching algorithms in space weather domain.These include the scale-invariant feature transform algorithm,speed... Augmented solar images were used to research the adaptability of four representative image extraction and matching algorithms in space weather domain.These include the scale-invariant feature transform algorithm,speeded-up robust features algorithm,binary robust invariant scalable keypoints algorithm,and oriented fast and rotated brief algorithm.The performance of these algorithms was estimated in terms of matching accuracy,feature point richness,and running time.The experiment result showed that no algorithm achieved high accuracy while keeping low running time,and all algorithms are not suitable for image feature extraction and matching of augmented solar images.To solve this problem,an improved method was proposed by using two-frame matching to utilize the accuracy advantage of the scale-invariant feature transform algorithm and the speed advantage of the oriented fast and rotated brief algorithm.Furthermore,our method and the four representative algorithms were applied to augmented solar images.Our application experiments proved that our method achieved a similar high recognition rate to the scale-invariant feature transform algorithm which is significantly higher than other algorithms.Our method also obtained a similar low running time to the oriented fast and rotated brief algorithm,which is significantly lower than other algorithms. 展开更多
关键词 Augmented reality Augmented image Image feature point extraction and matching Space weather Solar image
在线阅读 下载PDF
Research on Feature Extraction of Composite Pseudocode Phase Modulation-Carrier Frequency Modulation Signal Based on PWD Transform
15
作者 李明孜 赵惠昌 《Defence Technology(防务技术)》 SCIE EI CAS 2008年第4期281-284,共4页
The identification features of composite pseudocode phase modulation and carry frequency modulation signal include pseudocode and modulation frequency. In this paper,PWD is used to extract these features. First,the fe... The identification features of composite pseudocode phase modulation and carry frequency modulation signal include pseudocode and modulation frequency. In this paper,PWD is used to extract these features. First,the feature of pseudocode is extracted using the amplitude output of PWD and the correlation filter technology. Then the feature of frequency modulation is extracted by way of PWD analysis on the signal processed by anti-phase operation according to the extracted feature of pseudo code,i.e. position information of changed abruptly point of phase. The simulation result shows that both the features of frequency modulation and phase change position caused by the pseudocode phase modulation can be extracted effectively for SNR=3 dB. 展开更多
关键词 信号接收系统 信号分析 侦察 电子对抗
在线阅读 下载PDF
面向对象影像信息提取软件Feature Analyst和eCognition的分析与比较 被引量:17
16
作者 牛春盈 江万寿 +1 位作者 黄先锋 谢俊峰 《遥感信息》 CSCD 2007年第2期66-70,I0005,共6页
介绍了目前最为先进的两种面向对象的影像信息提取软件Feature Analyst和eCognition。通过对两种软件设计思路、工作流程和软件特殊性的对比分析,探讨了影像信息自动提取的发展趋势。
关键词 面向对象 高分辨率遥感影像 信息提取 feature ANALYST ECOGNITION 机器学习
在线阅读 下载PDF
Feature fusion method for edge detection of color images 被引量:4
17
作者 Ma Yu Gu Xiaodong Wang Yuanyuan 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2009年第2期394-399,共6页
A novel feature fusion method is proposed for the edge detection of color images. Except for the typical features used in edge detection, the color contrast similarity and the orientation consistency are also selected... A novel feature fusion method is proposed for the edge detection of color images. Except for the typical features used in edge detection, the color contrast similarity and the orientation consistency are also selected as the features. The four features are combined together as a parameter to detect the edges of color images. Experimental results show that the method can inhibit noisy edges and facilitate the detection for weak edges. It has a better performance than conventional methods in noisy environments. 展开更多
关键词 color image processing edge detection feature extraction feature fusion
在线阅读 下载PDF
Unsupervised feature selection based on Markov blanket and particle swarm optimization 被引量:2
18
作者 Yintong Wang Jiandong Wang +1 位作者 Hao Liao Haiyan Chen 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2017年第1期151-161,共11页
Feature selection plays an important role in data mining and recognition, especially in the large scale text, image and biological data. Specifically, the class label information is unavailable to guide the selection ... Feature selection plays an important role in data mining and recognition, especially in the large scale text, image and biological data. Specifically, the class label information is unavailable to guide the selection of minimal feature subset in unsupervised feature selection, which is challenging and interesting. An unsupervised feature selection based on Markov blanket and particle swarm optimization is proposed named as UFSMB-PSO. The proposed method seeks to find the high-quality feature subset through multi-particles' cooperation of particle swarm optimization without using any learning algorithms. Moreover, the features' relevance will be computed based on an information metric of relevance gain, which provides an information theoretical foundation for finding the minimization of the redundancy between features. Our results on several benchmark datasets demonstrate that UFSMB-PSO can achieve significant improvement over state of the art unsupervised methods. © 1990-2011 Beijing Institute of Aerospace Information. 展开更多
关键词 Character recognition Data mining feature extraction Information theory
在线阅读 下载PDF
Individual Identification of Dairy Cows Based on Deep Feature Extrac-tion and Matching
19
作者 Shen Wei-zheng Sun Jia +4 位作者 Liang Chen Shi Wei Guo Jin-yan Zhang Zhe Zhang Yong-gen 《Journal of Northeast Agricultural University(English Edition)》 CAS 2022年第3期85-96,共12页
Individual identification of dairy cows is the prerequisite for automatic analysis and intelligent perception of dairy cows'behavior.At present,individual identification of dairy cows based on deep convolutional n... Individual identification of dairy cows is the prerequisite for automatic analysis and intelligent perception of dairy cows'behavior.At present,individual identification of dairy cows based on deep convolutional neural network had the disadvantages in prolonged training at the additions of new cows samples.Therefore,a cow individual identification framework was proposed based on deep feature extraction and matching,and the individual identification of dairy cows based on this framework could avoid repeated training.Firstly,the trained convolutional neural network model was used as the feature extractor;secondly,the feature extraction was used to extract features and stored the features into the template feature library to complete the enrollment;finally,the identifies of dairy cows were identified.Based on this framework,when new cows joined the herd,enrollment could be completed quickly.In order to evaluate the application performance of this method in closed-set and open-set individual identification of dairy cows,back images of 524 cows were collected,among which the back images of 150 cows were selected as the training data to train feature extractor.The data of the remaining 374 cows were used to generate the template data set and the data to be identified.The experiment results showed that in the closed-set individual identification of dairy cows,the highest identification accuracy of top-1 was 99.73%,the highest identification accuracy from top-2 to top-5 was 100%,and the identification time of a single cow was 0.601 s,this method was verified to be effective.In the open-set individual identification of dairy cows,the recall was 90.38%,and the accuracy was 89.46%.When false accept rate(FAR)=0.05,true accept rate(TAR)=84.07%,this method was verified that the application had certain research value in open-set individual identification of dairy cows,which provided a certain idea for the application of individual identification in the field of intelligent animal husbandry. 展开更多
关键词 cow individual identification convolutional neural networks deep feature extraction feature matching
在线阅读 下载PDF
A Method for Head-shoulder Segmentation and Human Facial Feature Positioning 被引量:1
20
作者 HuTianjian CaiDejun 《通信学报》 EI CSCD 北大核心 1998年第5期28-33,共6页
AMethodforHeadshoulderSegmentationandHumanFacialFeaturePositioningHuTianjianCaiDejunDepartmentofElectricalan... AMethodforHeadshoulderSegmentationandHumanFacialFeaturePositioningHuTianjianCaiDejunDepartmentofElectricalandInformationEngi... 展开更多
关键词 模型适应 边缘检测 图像编码 头肩分节 人面部特征定位
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部