In this study,a series of triaxial tests are conducted on sandstone specimens to investigate the evolution of their mechanics and permeability characteristics under the combined action of immersion corrosion and seepa...In this study,a series of triaxial tests are conducted on sandstone specimens to investigate the evolution of their mechanics and permeability characteristics under the combined action of immersion corrosion and seepage of different chemical solutions.It is observed that with the increase of confining pressure,the peak stress,dilatancy stress,dilatancy stress ratio,peak strain,and elastic modulus of the sandstone increase while the Poisson ratio decreases and less secondary cracks are produced when the samples are broken.The pore pressure and confining pressure have opposite influences on the mechanical properties.With the increase of the applied axial stress,three stages are clearly identified in the permeability evolution curves:initial compaction stage,linear elasticity stage and plastic deformation stage.The permeability reaches the maximum value when the highest volumetric dilatancy is obtained.In addition,the hydrochemical action of salt solution with pH=7 and 4 has an obvious deteriorating effect on the mechanical properties and induces the increase of permeability.The obtained results will be useful in engineering to understand the mechanical and seepage properties of sandstone under the coupled chemical-seepage-stress multiple fields.展开更多
There were differences between real boundary and blast hole controlling boundary of irregular mined-out area in underground metal mines. There were errors in numerical analysis of stability for goaf, if it was analyze...There were differences between real boundary and blast hole controlling boundary of irregular mined-out area in underground metal mines. There were errors in numerical analysis of stability for goaf, if it was analyzed as regular 3D mined-out area and the influence of coupling stress-seepage-disturbance was not considered adequately. Taking a lead zinc mine as the background, the model was built by the coupling of Surpac and Midas-Gts based on the goaf model precisely measured by CMS.According to seepage stress fundamental equations based on the equivalent continuum mechanical and the theory about equivalent load of dynamic disturbance in deep-hole blasting, the stability of mined-out area under multi-field coupling of stress-seepage-dynamic disturbance was numerically analyzed. The results show that it is more consistent between the numerical analysis model based on the real model of irregular 3D shape goaf and the real situation, which could faithfully reappear the change rule of stress–strain about the surrounding rock under synthetic action of blasting dynamic loading and the seepage pressure. The mined-out area multi-field coupling formed by blasting excavation is stable. Based on combination of the advantages of the CMS,Surpac and Midas-Gts, and fully consideration of the effects of multi-field coupling, the accurate and effective way could be provided for numerical analysis of stability for mined-out area.展开更多
Facing the problems lack of considering the non-uniform distribution of the static bias magnetic field and computing the panicle displacements in the simulation model of electromagnetic acoustic transducer (EMAT), a...Facing the problems lack of considering the non-uniform distribution of the static bias magnetic field and computing the panicle displacements in the simulation model of electromagnetic acoustic transducer (EMAT), a multi-field coupled model was established and the finite element method (FEM) was presented to calculate the entire transduction process. The multi-field coupled model included the static magnetic field, pulsed eddy current field and mechanical field. The FEM equations of the three fields were derived by Garlerkin FEM method. Thus, the entire transduction process of the EMAT was calculated through sequentially coupling the three fields. The transduction process of a Lamb wave EMAT was calculated according to the present model and method. The results show that, by the present method, it is valid to calculate the particle displacement under the given excitation signal and non-uniformly distributed static magnetic field. Calculation error will be brought about if the non-uniform distribution of the static bias magnetic field is neglected.展开更多
基金Projects(12072102,12102129)supported by the National Natural Science Foundation of ChinaProject(DM2022B01)supported by the Key Laboratory of Safe Mining of Deep Metal Mines,Ministry of Education,ChinaProject(JZ-008)supported by the Six Talent Peaks Project in Jiangsu Province,China。
文摘In this study,a series of triaxial tests are conducted on sandstone specimens to investigate the evolution of their mechanics and permeability characteristics under the combined action of immersion corrosion and seepage of different chemical solutions.It is observed that with the increase of confining pressure,the peak stress,dilatancy stress,dilatancy stress ratio,peak strain,and elastic modulus of the sandstone increase while the Poisson ratio decreases and less secondary cracks are produced when the samples are broken.The pore pressure and confining pressure have opposite influences on the mechanical properties.With the increase of the applied axial stress,three stages are clearly identified in the permeability evolution curves:initial compaction stage,linear elasticity stage and plastic deformation stage.The permeability reaches the maximum value when the highest volumetric dilatancy is obtained.In addition,the hydrochemical action of salt solution with pH=7 and 4 has an obvious deteriorating effect on the mechanical properties and induces the increase of permeability.The obtained results will be useful in engineering to understand the mechanical and seepage properties of sandstone under the coupled chemical-seepage-stress multiple fields.
基金Project(2012BAK09B02-05)supported by the National"Twelfth Five"Science and Technology Support Program,ChinaProject(51274250)supported by the National Natural Science Foundation of China+2 种基金Project(2013zzts057)supported by the Fundamental Research Funds for the Central Universities,ChinaProject(11KF02)supported by the Research Fund of the State Key Laboratory of Coal Resources and Mine safety,CUMT,ChinaProject(2012M511417)supported by China Postdoctoral Science Foundation
文摘There were differences between real boundary and blast hole controlling boundary of irregular mined-out area in underground metal mines. There were errors in numerical analysis of stability for goaf, if it was analyzed as regular 3D mined-out area and the influence of coupling stress-seepage-disturbance was not considered adequately. Taking a lead zinc mine as the background, the model was built by the coupling of Surpac and Midas-Gts based on the goaf model precisely measured by CMS.According to seepage stress fundamental equations based on the equivalent continuum mechanical and the theory about equivalent load of dynamic disturbance in deep-hole blasting, the stability of mined-out area under multi-field coupling of stress-seepage-dynamic disturbance was numerically analyzed. The results show that it is more consistent between the numerical analysis model based on the real model of irregular 3D shape goaf and the real situation, which could faithfully reappear the change rule of stress–strain about the surrounding rock under synthetic action of blasting dynamic loading and the seepage pressure. The mined-out area multi-field coupling formed by blasting excavation is stable. Based on combination of the advantages of the CMS,Surpac and Midas-Gts, and fully consideration of the effects of multi-field coupling, the accurate and effective way could be provided for numerical analysis of stability for mined-out area.
基金Project(10974115) supported by the National Natural Science Foundation of China
文摘Facing the problems lack of considering the non-uniform distribution of the static bias magnetic field and computing the panicle displacements in the simulation model of electromagnetic acoustic transducer (EMAT), a multi-field coupled model was established and the finite element method (FEM) was presented to calculate the entire transduction process. The multi-field coupled model included the static magnetic field, pulsed eddy current field and mechanical field. The FEM equations of the three fields were derived by Garlerkin FEM method. Thus, the entire transduction process of the EMAT was calculated through sequentially coupling the three fields. The transduction process of a Lamb wave EMAT was calculated according to the present model and method. The results show that, by the present method, it is valid to calculate the particle displacement under the given excitation signal and non-uniformly distributed static magnetic field. Calculation error will be brought about if the non-uniform distribution of the static bias magnetic field is neglected.