期刊文献+
共找到30,847篇文章
< 1 2 250 >
每页显示 20 50 100
Chinese Guidelines for the Diagnosis and Management of Atrial Fibrillation 被引量:3
1
作者 Chang-Sheng MA Shu-Lin WU +4 位作者 Shao-Wen LIU Ya-Ling HAN Chinese Society of Cardiology Chinese Medical Association Heart Rhythm Committee of Chinese Society of Biomedical Engineering 《Journal of Geriatric Cardiology》 SCIE CAS CSCD 2024年第3期251-314,共64页
Atrial fibrillation(AF)is the most common sustained cardiac arrhythmia,significantly impacting patients’quality of life and increasing the risk of death,stroke,heart failure,and dementia.Over the past two decades,the... Atrial fibrillation(AF)is the most common sustained cardiac arrhythmia,significantly impacting patients’quality of life and increasing the risk of death,stroke,heart failure,and dementia.Over the past two decades,there have been significant breakthroughs in AF risk prediction and screening,stroke prevention,rhythm control,catheter ablation,and integrated management.During this period,the scale,quality,and experience of AF management in China have greatly improved,providing a solid foundation for the development of guidelines for the diagnosis and management of AF.To further promote standardized AF management,and apply new technologies and concepts to clinical practice in a timely and comprehensive manner,the Chinese Society of Cardiology of the Chinese Medical Association and the Heart Rhythm Committee of the Chinese Society of Biomedical Engineering have jointly developed the Chinese Guidelines for the Diagnosis and Management of Atrial Fibrillation.The guidelines have comprehensively elaborated on various aspects of AF management and proposed the CHA2DS2-VASc-60 stroke risk score based on the characteristics of AF in the Asian population.The guidelines have also reevaluated the clinical application of AF screening,emphasized the significance of early rhythm control,and highlighted the central role of catheter ablation in rhythm control. 展开更多
关键词 PREVENTION SUSTAINED diagnosis
在线阅读 下载PDF
Handheld bedside ultrasound in the diagnosis of myocarditis 被引量:2
2
作者 Frank Wheeler Robin Lahr +2 位作者 James Espinosa Alan Lucerna Henry Schuitema 《World Journal of Emergency Medicine》 SCIE CAS CSCD 2024年第1期73-74,共2页
Myocarditis is a disease process that every emergency physician fears missing.Its severity can be mild to life-threatening,and many cases are likely undetected because they are subclinical with nonspecifi c signs.[1]S... Myocarditis is a disease process that every emergency physician fears missing.Its severity can be mild to life-threatening,and many cases are likely undetected because they are subclinical with nonspecifi c signs.[1]Subtle cardiac signs may be overshadowed by systemic symptoms of the underlying infectious process.Fever,myalgias,lethargy,symptoms commonly associated with viral syndrome,can mask the life-threatening myocarditis that may be present.In fact,in the United States Myocarditis Treatment Trial,almost 90%of patients reported symptoms consistent with a viral prodrome.[2]Ammirati et al[3]reported that 27%of patients with myocarditis had either reduced left ventricular ejection fraction,ventricular arrhythmias,or low cardiac output.Here,we present a case report,in which handheld point-of-care ultrasound was utilized at the bedside to aid in the critical diagnosis of myocarditis.With the additional information provided through this imaging modality,this patient was able to be transferred to the appropriate tertiary care facility in an expeditious manner and receive possible defi nitive treatment. 展开更多
关键词 diagnosis MYOCARDITIS FEVER
在线阅读 下载PDF
Value of procalcitonin and presepsin in the diagnosis and severity stratification of sepsis and septic shock 被引量:2
3
作者 Enfeng Ren Hongli Xiao +3 位作者 Guoxing Wang Yongzhen Zhao Han Yu Chunsheng Li 《World Journal of Emergency Medicine》 SCIE CAS CSCD 2024年第2期135-138,共4页
Sepsis is defined as life-threatening organ dysfunction caused by a dysregulated host response to infection.[1,2]Septic shock,the most severe form of sepsis,is characterized by circulatory and cellular/metabolic abnor... Sepsis is defined as life-threatening organ dysfunction caused by a dysregulated host response to infection.[1,2]Septic shock,the most severe form of sepsis,is characterized by circulatory and cellular/metabolic abnormalities,and can increase mortality to>40%.[1-3]Early recognition and risk stratification of septic shock are crucial but challenging because of the heterogeneity of its presentation and progression. 展开更多
关键词 diagnosis SEPSIS MORTALITY
在线阅读 下载PDF
Exploring impedance spectrum for lithium-ion batteries diagnosis and prognosis:A comprehensive review 被引量:2
4
作者 Xinghao Du Jinhao Meng +2 位作者 Yassine Amirat Fei Gao Mohamed Benbouzid 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第8期464-483,I0010,共21页
Lithium-ion batteries have extensive usage in various energy storage needs,owing to their notable benefits of high energy density and long lifespan.The monitoring of battery states and failure identification are indis... Lithium-ion batteries have extensive usage in various energy storage needs,owing to their notable benefits of high energy density and long lifespan.The monitoring of battery states and failure identification are indispensable for guaranteeing the secure and optimal functionality of the batteries.The impedance spectrum has garnered growing interest due to its ability to provide a valuable understanding of material characteristics and electrochemical processes.To inspire further progress in the investigation and application of the battery impedance spectrum,this paper provides a comprehensive review of the determination and utilization of the impedance spectrum.The sources of impedance inaccuracies are systematically analyzed in terms of frequency response characteristics.The applicability of utilizing diverse impedance features for the diagnosis and prognosis of batteries is further elaborated.Finally,challenges and prospects for future research are discussed. 展开更多
关键词 Lithium-ion battery Impedance spectrum Temperature monitoring Failure diagnosis Health prognosis
在线阅读 下载PDF
A novel multi-resolution network for the open-circuit faults diagnosis of automatic ramming drive system 被引量:1
5
作者 Liuxuan Wei Linfang Qian +3 位作者 Manyi Wang Minghao Tong Yilin Jiang Ming Li 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第4期225-237,共13页
The open-circuit fault is one of the most common faults of the automatic ramming drive system(ARDS),and it can be categorized into the open-phase faults of Permanent Magnet Synchronous Motor(PMSM)and the open-circuit ... The open-circuit fault is one of the most common faults of the automatic ramming drive system(ARDS),and it can be categorized into the open-phase faults of Permanent Magnet Synchronous Motor(PMSM)and the open-circuit faults of Voltage Source Inverter(VSI). The stator current serves as a common indicator for detecting open-circuit faults. Due to the identical changes of the stator current between the open-phase faults in the PMSM and failures of double switches within the same leg of the VSI, this paper utilizes the zero-sequence voltage component as an additional diagnostic criterion to differentiate them.Considering the variable conditions and substantial noise of the ARDS, a novel Multi-resolution Network(Mr Net) is proposed, which can extract multi-resolution perceptual information and enhance robustness to the noise. Meanwhile, a feature weighted layer is introduced to allocate higher weights to characteristics situated near the feature frequency. Both simulation and experiment results validate that the proposed fault diagnosis method can diagnose 25 types of open-circuit faults and achieve more than98.28% diagnostic accuracy. In addition, the experiment results also demonstrate that Mr Net has the capability of diagnosing the fault types accurately under the interference of noise signals(Laplace noise and Gaussian noise). 展开更多
关键词 Fault diagnosis Deep learning Multi-scale convolution Open-circuit Convolutional neural network
在线阅读 下载PDF
Light-Activated Virtual Sensor Array with Machine Learning for Non-Invasive Diagnosis of Coronary Heart Disease 被引量:1
6
作者 Jiawang Hu Hao Qian +2 位作者 Sanyang Han Ping Zhang Yuan Lu 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第12期427-448,共22页
Early non-invasive diagnosis of coronary heart disease(CHD)is critical.However,it is challenging to achieve accurate CHD diagnosis via detecting breath.In this work,heterostructured complexes of black phosphorus(BP)an... Early non-invasive diagnosis of coronary heart disease(CHD)is critical.However,it is challenging to achieve accurate CHD diagnosis via detecting breath.In this work,heterostructured complexes of black phosphorus(BP)and two-dimensional carbide and nitride(MXene)with high gas sensitivity and photo responsiveness were formulated using a self-assembly strategy.A light-activated virtual sensor array(LAVSA)based on BP/Ti_(3)C_(2)Tx was prepared under photomodulation and further assembled into an instant gas sensing platform(IGSP).In addition,a machine learning(ML)algorithm was introduced to help the IGSP detect and recognize the signals of breath samples to diagnose CHD.Due to the synergistic effect of BP and Ti_(3)C_(2)Tx as well as photo excitation,the synthesized heterostructured complexes exhibited higher performance than pristine Ti_(3)C_(2)Tx,with a response value 26%higher than that of pristine Ti_(3)C_(2)Tx.In addition,with the help of a pattern recognition algorithm,LAVSA successfully detected and identified 15 odor molecules affiliated with alcohols,ketones,aldehydes,esters,and acids.Meanwhile,with the assistance of ML,the IGSP achieved 69.2%accuracy in detecting the breath odor of 45 volunteers from healthy people and CHD patients.In conclusion,an immediate,low-cost,and accurate prototype was designed and fabricated for the noninvasive diagnosis of CHD,which provided a generalized solution for diagnosing other diseases and other more complex application scenarios. 展开更多
关键词 Black phosphorus/MXene heterostructures Light-activated virtual sensor array diagnosis of coronary heart disease Machine learning
在线阅读 下载PDF
Development and validation of a 6-gene signature derived from RNA modification-associated genes for the diagnosis of Acute Stanford Type A Aortic Dissection
7
作者 Ting-Ting ZHANG Qun-Gen LI +4 位作者 Zi-Peng LI Wei CHEN Chang LIU Hai TIAN Jun-Bo CHUAI 《Journal of Geriatric Cardiology》 SCIE CAS CSCD 2024年第9期884-898,共15页
Background Acute Stanford Type A Aortic Dissection(ATAAD)is a critical medical emergency characterized by significant morbidity and mortality.This study aims to identify specific gene expression patterns and RNA modif... Background Acute Stanford Type A Aortic Dissection(ATAAD)is a critical medical emergency characterized by significant morbidity and mortality.This study aims to identify specific gene expression patterns and RNA modification associated with ATAAD.Methods The GSE153434 dataset was obtained from the Gene Expression Omnibus(GEO)database.Differential expression analysis was conducted to identify differential expression genes(DEGs)associated with ATAAD.To validate the involvement of RNA modification in ATAAD,RNA modification-related genes(M6A,M1A,M5C,APA,A-to-I)were acquired from GeneCards,following by Least Absolute Shrinkage and Selection Operator(LASSO)regression analysis.A gene prediction signature consisting of key genes was established,and Real-time PCR was used to validate the gene expression in clinical samples.The patients were then divided into high and low-risk groups,and subsequent enrichment analysis,including Gene Ontology(GO),Kyoto Encyclopedia of Genes and Genomes(KEGG),Gene Set Enrichment Analysis(GSEA),Gene Set Variation Analysis(GSVA),and assessments of immune infiltration.A co-expression network analysis(WGCNA)was performed to explore gene-phenotype relationships and identify key genes.Results A total of 45 RNA modification genes were acquired.Six gene signatures(YTHDC1,WTAP,CFI,ADARB1,ADARB2,TET3)were developed for ATAAD diagnosis and risk stratification.Enrichment analysis suggested the potential involvement of inflammation and extracellular matrix pathways in the progression of ATAAD.The incorporation of pertinent genes from the GSE147026 dataset into the six-gene signature further validated the model's effectiveness.A significant upregulation in WTAP,ADARB2,and TET3 expression,whereas YTHDC1 exhibited a noteworthy downregulation in the ATAAD group.Conclusion Six-gene signature could serve as an efficient model for predicting the diagnosis of ATAAD. 展开更多
关键词 diagnosis STANFORD INVOLVEMENT
在线阅读 下载PDF
Cardiovascular computed tomography in cardiovascular disease:An overview of its applications from diagnosis to prediction
8
作者 Zhong-Hua SUN 《Journal of Geriatric Cardiology》 SCIE CAS CSCD 2024年第5期550-576,共27页
Cardiovascular computed tomography angiography(CTA)is a widely used imaging modality in the diagnosis of cardiovascular disease.Advancements in CT imaging technology have further advanced its applications from high di... Cardiovascular computed tomography angiography(CTA)is a widely used imaging modality in the diagnosis of cardiovascular disease.Advancements in CT imaging technology have further advanced its applications from high diagnostic value to minimising radiation exposure to patients.In addition to the standard application of assessing vascular lumen changes,CTA-derived applications including 3D printed personalised models,3D visualisations such as virtual endoscopy,virtual reality,augmented reality and mixed reality,as well as CT-derived hemodynamic flow analysis and fractional flow reserve(FFRCT)greatly enhance the diagnostic performance of CTA in cardiovascular disease.The widespread application of artificial intelligence in medicine also significantly contributes to the clinical value of CTA in cardiovascular disease.Clinical value of CTA has extended from the initial diagnosis to identification of vulnerable lesions,and prediction of disease extent,hence improving patient care and management.In this review article,as an active researcher in cardiovascular imaging for more than 20 years,I will provide an overview of cardiovascular CTA in cardiovascular disease.It is expected that this review will provide readers with an update of CTA applications,from the initial lumen assessment to recent developments utilising latest novel imaging and visualisation technologies.It will serve as a useful resource for researchers and clinicians to judiciously use the cardiovascular CT in clinical practice. 展开更多
关键词 diagnosis CARDIOVASCULAR PREDICTION
在线阅读 下载PDF
Public perspectives on AI diagnosis of mental illness
9
作者 Cliodhna O'Connor 《General Psychiatry》 CSCD 2024年第3期348-351,共4页
To the editor:Psychiatric theory,policy and practice are currently grappling with the risks and opportunities presented by artificial intelligence(AI)applications in mental healthcare.Synthesising data to generate dia... To the editor:Psychiatric theory,policy and practice are currently grappling with the risks and opportunities presented by artificial intelligence(AI)applications in mental healthcare.Synthesising data to generate diagnosis is an aspect of mental healthcare where AI is anticipated to have the greatest and soonest impact.1-4 While such technologies remain some distance from clinical application,preliminary evidence suggests AI-derived classifications may predict certain treatment outcomes and clinical trajectories,and could soon become available to supplement or replace traditional manual-based diagnostic assessment. 展开更多
关键词 diagnosis replace EDITOR
在线阅读 下载PDF
Activatable fluorescent probes for imaging and diagnosis of rheumatoid arthritis
10
作者 Pan Luo Fu-Qiang Gao +5 位作者 Wei Sun Jun-You Li Cheng Wang Qing-Yu Zhang Zhi-Zhuo Li Peng Xu 《Military Medical Research》 SCIE CAS CSCD 2024年第2期287-307,共21页
Rheumatoid arthritis(RA)is a systemic autoimmune disease that is primarily manifested as synovitis and polyarticular opacity and typically leads to serious joint damage and irreversible disability,thus adversely affec... Rheumatoid arthritis(RA)is a systemic autoimmune disease that is primarily manifested as synovitis and polyarticular opacity and typically leads to serious joint damage and irreversible disability,thus adversely affecting locomotion ability and life quality.Consequently,good prognosis heavily relies on the early diagnosis and effective therapeutic monitoring of RA.Activatable fluorescent probes play vital roles in the detection and imaging of biomarkers for disease diagnosis and in vivo imaging.Herein,we review the fluorescent probes developed for the detection and imaging of RA biomarkers,namely reactive oxygen/nitrogen species(hypochlorous acid,peroxynitrite,hydroxyl radical,nitroxyl),pH,and cysteine,and address the related challenges and prospects to inspire the design of novel fluorescent probes and the improvement of their performance in RA studies. 展开更多
关键词 Rheumatoid arthritis Fluorescent probe IMAGING diagnosis BIOMARKER
在线阅读 下载PDF
Unlocking the potential of unlabeled data:Self-supervised machine learning for battery aging diagnosis with real-world field data
11
作者 Qiao Wang Min Ye +4 位作者 Sehriban Celik Zhongwei Deng Bin Li Dirk Uwe Sauer Weihan Li 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第12期681-691,共11页
Accurate aging diagnosis is crucial for the health and safety management of lithium-ion batteries in electric vehicles.Despite significant advancements achieved by data-driven methods,diagnosis accuracy remains constr... Accurate aging diagnosis is crucial for the health and safety management of lithium-ion batteries in electric vehicles.Despite significant advancements achieved by data-driven methods,diagnosis accuracy remains constrained by the high costs of check-up tests and the scarcity of labeled data.This paper presents a framework utilizing self-supervised machine learning to harness the potential of unlabeled data for diagnosing battery aging in electric vehicles during field operations.We validate our method using battery degradation datasets collected over more than two years from twenty real-world electric vehicles.Our analysis comprehensively addresses cell inconsistencies,physical interpretations,and charging uncertainties in real-world applications.This is achieved through self-supervised feature extraction using random short charging sequences in the main peak of incremental capacity curves.By leveraging inexpensive unlabeled data in a self-supervised approach,our method demonstrates improvements in average root mean square errors of 74.54%and 60.50%in the best and worst cases,respectively,compared to the supervised benchmark.This work underscores the potential of employing low-cost unlabeled data with self-supervised machine learning for effective battery health and safety management in realworld scenarios. 展开更多
关键词 Lithium-ion battery Aging diagnosis Self-supervised Machine learning Unlabeled data
在线阅读 下载PDF
Fault Diagnosis for Buckling Friction Components in Wet Multi-Disc Clutches Using IHHT
12
作者 Yuqing Feng Changsong Zheng +2 位作者 Liang Yu Chengsi Wei Xiangjun Ouyang 《Journal of Beijing Institute of Technology》 EI CAS 2024年第4期326-336,共11页
The wet multi-disc clutches are extensively used in various transmission systems,withone of the most prevalent failure modes being the buckling deformation of friction components.Animproved Hilbert-Huang transform met... The wet multi-disc clutches are extensively used in various transmission systems,withone of the most prevalent failure modes being the buckling deformation of friction components.Animproved Hilbert-Huang transform method(IHHT)is proposed to address the limitations of tradi-tional time-domain vibration analyses,such as low accuracy and mode mixing.This paper first clas-sifies the buckling degree of the friction components.Next,wavelet packet transform(WPT)isapplied to the vibration signals of different buckling plates to partition them into distinct fre-quency bands.Then,the instantaneous features are extracted by empirical mode decomposition(EMD)and Hilbert transform(HT)to discarding extraneous intrinsic mode function(IMF)com-ponents.Comparative analyses of Hilbert spectral entropy and time-domain features confirm theenhanced precision of IHHT under specific classifiers,which is better than traditional methods. 展开更多
关键词 multi-disc clutch BUCKLING fault diagnosis Hilbert-Huang transform ENTROPY
在线阅读 下载PDF
In the early diagnosis of cardiac amyloidosis by point-of-care ultrasound(POCUS)in older patients with heart failure:towards a new standard of care?
13
作者 Laura Samaniego-Vega Ana Ayesta-Lopez +3 位作者 Elena Valle-Calonge Jesus MDe La Hera-Galarza Jose Gutierrez-Rodriguez Pablo Solla-Suarez 《Journal of Geriatric Cardiology》 CSCD 2024年第12期1147-1148,共2页
It is estimated that approximately one in ten people over the age of 80 may suffer from cardiac amyloidosis(CA),a disease in which various aging-related factors,such as increased oxidative stress,can promote abnormal ... It is estimated that approximately one in ten people over the age of 80 may suffer from cardiac amyloidosis(CA),a disease in which various aging-related factors,such as increased oxidative stress,can promote abnormal protein folding and the formation of amyloid deposits in the heart.Over the long term,this tends to impair cardiac function,increasing the risk of developing cardiac conduction disorders,atrial fibrillation,thromboembolic events,heart failure(HF),and/or ventricular dysfunction.^([1,2]) 展开更多
关键词 CARDIAC AMYLOID diagnosis
在线阅读 下载PDF
Noninvasive beam diagnosis based on the TM_(010)mode
14
作者 Chuang-Ye Song Wen-Hui Huang 《Nuclear Science and Techniques》 SCIE EI CAS CSCD 2024年第7期115-125,共11页
A resonant cavity based on the TM_(010)mode is an effective tool for noninvasive beam characterization. This technique has the advantages of a high signal-to-noise ratio, compact structure, and is related to multiple ... A resonant cavity based on the TM_(010)mode is an effective tool for noninvasive beam characterization. This technique has the advantages of a high signal-to-noise ratio, compact structure, and is related to multiple parameters compared with other beam monitors. In this study, high-precision measurements of the bunch charge, arrival time, bunch length, and energy parameters based on the TM_(010)mode are discussed. A cavity beam arrival time monitor(BAM) utilizing a phase cavity has been widely used in many facilities. Regarding bunch-length measurements, the influence of the beam energy, beam offset,and longitudinal spectrum on the TM_(010)mode are carefully considered to reduce errors, and the theoretical resolution of two cavities with different frequencies is analyzed. Owing to the dependence of the beam velocity of the beam loss factor, this method can also be used for the detection low beam energy using two cavities with the same frequency but different cavity lengths. A set of three cavities with different lengths and frequencies of 1.902 and 11.424 GHz is presented for measuring the four aforementioned parameters. 展开更多
关键词 TM_(010)mode Noninvasive diagnosis Beam length Low energy
在线阅读 下载PDF
Machine learning for parameters diagnosis of spark discharge by electro-acoustic signal
15
作者 熊俊 卢诗宇 +3 位作者 刘晓明 周文俊 查晓明 裴学凯 《Plasma Science and Technology》 SCIE EI CAS CSCD 2024年第8期64-72,共9页
Discharge plasma parameter measurement is a key focus in low-temperature plasma research.Traditional diagnostics often require costly equipment,whereas electro-acoustic signals provide a rich,non-invasive,and less com... Discharge plasma parameter measurement is a key focus in low-temperature plasma research.Traditional diagnostics often require costly equipment,whereas electro-acoustic signals provide a rich,non-invasive,and less complex source of discharge information.This study harnesses machine learning to decode these signals.It establishes links between electro-acoustic signals and gas discharge parameters,such as power and distance,thus streamlining the prediction process.By building a spark discharge platform to collect electro-acoustic signals and implementing a series of acoustic signal processing techniques,the Mel-Frequency Cepstral Coefficients(MFCCs)of the acoustic signals are extracted to construct the predictors.Three machine learning models(Linear Regression,k-Nearest Neighbors,and Random Forest)are introduced and applied to the predictors to achieve real-time rapid diagnostic measurement of typical spark discharge power and discharge distance.All models display impressive performance in prediction precision and fitting abilities.Among them,the k-Nearest Neighbors model shows the best performance on discharge power prediction with the lowest mean square error(MSE=0.00571)and the highest R-squared value(R^(2)=0.93877).The experimental results show that the relationship between the electro-acoustic signal and the gas discharge power and distance can be effectively constructed based on the machine learning algorithm,which provides a new idea and basis for the online monitoring and real-time diagnosis of plasma parameters. 展开更多
关键词 discharge plasma plasma real-time diagnosis electro-acoustic signal machine learning acoustic signature
在线阅读 下载PDF
Data-driven diagnosis of high temperature PEM fuel cells based on the electrochemical impedance spectroscopy: Robustness improvement and evaluation
16
作者 Dan Yu Xingjun Li +2 位作者 Samuel Simon Araya Simon Lennart Sahlin Vincenzo Liso 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第9期544-558,共15页
Utilizing machine learning techniques for data-driven diagnosis of high temperature PEM fuel cells is beneficial and meaningful to the system durability. Nevertheless, ensuring the robustness of diagnosis remains a cr... Utilizing machine learning techniques for data-driven diagnosis of high temperature PEM fuel cells is beneficial and meaningful to the system durability. Nevertheless, ensuring the robustness of diagnosis remains a critical and challenging task in real application. To enhance the robustness of diagnosis and achieve a more thorough evaluation of diagnostic performance, a robust diagnostic procedure based on electrochemical impedance spectroscopy (EIS) and a new method for evaluation of the diagnosis robustness was proposed and investigated in this work. To improve the diagnosis robustness: (1) the degradation mechanism of different faults in the high temperature PEM fuel cell was first analyzed via the distribution of relaxation time of EIS to determine the equivalent circuit model (ECM) with better interpretability, simplicity and accuracy;(2) the feature extraction was implemented on the identified parameters of the ECM and extra attention was paid to distinguishing between the long-term normal degradation and other faults;(3) a Siamese Network was adopted to get features with higher robustness in a new embedding. The diagnosis was conducted using 6 classic classification algorithms—support vector machine (SVM), K-nearest neighbor (KNN), logistic regression (LR), decision tree (DT), random forest (RF), and Naive Bayes employing a dataset comprising a total of 1935 collected EIS. To evaluate the robustness of trained models: (1) different levels of errors were added to the features for performance evaluation;(2) a robustness coefficient (Roubust_C) was defined for a quantified and explicit evaluation of the diagnosis robustness. The diagnostic models employing the proposed feature extraction method can not only achieve the higher performance of around 100% but also higher robustness for diagnosis models. Despite the initial performance being similar, the KNN demonstrated a superior robustness after feature selection and re-embedding by triplet-loss method, which suggests the necessity of robustness evaluation for the machine learning models and the effectiveness of the defined robustness coefficient. This work hopes to give new insights to the robust diagnosis of high temperature PEM fuel cells and more comprehensive performance evaluation of the data-driven method for diagnostic application. 展开更多
关键词 PEM fuel cell Data-driven diagnosis Robustness improvement and evaluation Electrochemical impedance spectroscopy
在线阅读 下载PDF
From immunology to artificial intelligence: revolutionizing latent tuberculosis infection diagnosis with machine learning
17
作者 Lin-Sheng Li Ling Yang +3 位作者 Li Zhuang Zhao-Yang Ye Wei-Guo Zhao Wen-Ping Gong 《Military Medical Research》 SCIE CAS CSCD 2024年第5期747-784,共38页
Latent tuberculosis infection(LTBI)has become a major source of active tuberculosis(ATB).Although the tuberculin skin test and interferon-gamma release assay can be used to diagnose LTBI,these methods can only differe... Latent tuberculosis infection(LTBI)has become a major source of active tuberculosis(ATB).Although the tuberculin skin test and interferon-gamma release assay can be used to diagnose LTBI,these methods can only differentiate infected individuals from healthy ones but cannot discriminate between LTBI and ATB.Thus,the diagnosis of LTBI faces many challenges,such as the lack of effective biomarkers from Mycobacterium tuberculosis(MTB)for distinguishing LTBI,the low diagnostic efficacy of biomarkers derived from the human host,and the absence of a gold standard to differentiate between LTBI and ATB.Sputum culture,as the gold standard for diagnosing tuberculosis,is time-consuming and cannot distinguish between ATB and LTBI.In this article,we review the pathogenesis of MTB and the immune mechanisms of the host in LTBI,including the innate and adaptive immune responses,multiple immune evasion mechanisms of MTB,and epigenetic regulation.Based on this knowledge,we summarize the current status and challenges in diagnosing LTBI and present the application of machine learning(ML)in LTBI diagnosis,as well as the advantages and limitations of ML in this context.Finally,we discuss the future development directions of ML applied to LTBI diagnosis. 展开更多
关键词 Tuberculosis(TB) Latent tuberculosis infection(LTBI) Machine learning(ML) Biomarkers Differential diagnosis
在线阅读 下载PDF
Bearing fault diagnosis based on a multiple-constraint modal-invariant graph convolutional fusion network
18
作者 Zhongmei Wang Pengxuan Nie +3 位作者 Jianhua Liu Jing He Haibo Wu Pengfei Guo 《High-Speed Railway》 2024年第2期92-100,共9页
Multisensor data fusionmethod can improve the accuracy of bearing fault diagnosis,in order to address the problems of single-sensor data types and the insufficient exploration of redundancy and complementarity between... Multisensor data fusionmethod can improve the accuracy of bearing fault diagnosis,in order to address the problems of single-sensor data types and the insufficient exploration of redundancy and complementarity between different modal data in most existing multisensor data fusion methods for bearing fault diagnosis,a bearing fault diagnosis method based on a Multiple-Constraint Modal-Invariant Graph Convolutional Fusion Network(MCMI-GCFN)is proposed in this paper.Firstly,a Convolutional Autoencoder(CAE)and Squeeze-and-Excitation Block(SE block)are used to extract features of raw current and vibration signals.Secondly,the model introduces source domain classifiers and domain discriminators to capture modal invariance between different modal data based on domain adversarial training,making use of the redundancy and complementarity between multimodal data.Then,the spatial aggregation property of Graph Convolutional Neural Networks(GCN)is utilized to capture the dependency relationship between current and vibration modes with similar time step features for accurately fusing contextual semantic information.Finally,the validation is conducted on the public bearing damage current and vibration dataset from Paderborn University.The experimental results showed that the delivered fusion method achieved a bearing fault diagnosis accuracy of 99.6%,which was about 9%–11.4%better than that with nonfusion methods. 展开更多
关键词 Bearing fault diagnosis Data fusion Domain adversarial training GCN
在线阅读 下载PDF
Value of Texture Analysis of Intravoxel Incoherent Motion Parameters in Differential Diagnosis of Pancreatic Neuroendocrine Tumor and Pancreatic Adenocarcinoma 被引量:8
19
作者 王英伟 张兴华 +5 位作者 王波涛 王叶 刘梦琦 王海屹 叶慧义 陈志晔 《Chinese Medical Sciences Journal》 CAS CSCD 2019年第1期1-9,共9页
Objective To evaluate the value of texture features derived from intravoxel incoherent motion(IVIM) parameters for differentiating pancreatic neuroendocrine tumor(pNET) from pancreatic adenocarcinoma(PAC).Methods Eigh... Objective To evaluate the value of texture features derived from intravoxel incoherent motion(IVIM) parameters for differentiating pancreatic neuroendocrine tumor(pNET) from pancreatic adenocarcinoma(PAC).Methods Eighteen patients with pNET and 32 patients with PAC were retrospectively enrolled in this study. All patients underwent diffusion-weighted imaging with 10 b values used(from 0 to 800 s/mm2). Based on IVIM model, perfusion-related parameters including perfusion fraction(f), fast component of diffusion(Dfast) and true diffusion parameter slow component of diffusion(Dslow) were calculated on a voxel-by-voxel basis and reorganized into gray-encoded parametric maps. The mean value of each IVIM parameter and texture features [Angular Second Moment(ASM), Inverse Difference Moment(IDM), Correlation, Contrast and Entropy] values of IVIM parameters were measured. Independent sample t-test or Mann-Whitney U test were performed for the betweengroup comparison of quantitative data. Regression model was established by using binary logistic regression analysis, and receiver operating characteristic(ROC) curve was plotted to evaluate the diagnostic efficiency.Results The mean f value of the pNET group were significantly higher than that of the PAC group(27.0% vs. 19.0%, P = 0.001), while the mean values of Dfast and Dslow showed no significant differences between the two groups. All texture features(ASM, IDM, Correlation, Contrast and Entropy) of each IVIM parameter showed significant differences between the pNET and PAC groups(P = 0.000-0.043). Binary logistic regression analysis showed that texture ASM of Dfast and texture Correlation of Dslow were considered as the specific imaging variables for the differential diagnosis of pNET and PAC. ROC analysis revealed that multiple texture features presented better diagnostic performance than IVIM parameters(AUC 0.849-0.899 vs. 0.526-0.776), and texture ASM of Dfast combined with Correlation of Dslow in the model of logistic regression had largest area under ROC curve for distinguishing pNET from PAC(AUC 0.934, cutoff 0.378, sensitivity 0.889, specificity 0.854). Conclusion Texture analysis of IVIM parameters could be an effective and noninvasive tool to differentiate pNET from PAC. 展开更多
关键词 NEUROENDOCRINE TUMOR PANCREATIC ADENOCARCINOMA texture analysis intravoxel INCOHERENT motion differential diagnosis
在线阅读 下载PDF
Development of Fault Diagnosis System for Spacecraft Based on Fault Tree and G2 被引量:5
20
作者 纪常伟 荣吉利 《Journal of Beijing Institute of Technology》 EI CAS 2002年第4期444-448,共5页
Some ideas in the development of fault diagnosis system for spacecraft are introduced. Firstly, the architecture of spacecraft fault diagnosis is proposed hierarchically with four diagnosis frames, i.e., system level,... Some ideas in the development of fault diagnosis system for spacecraft are introduced. Firstly, the architecture of spacecraft fault diagnosis is proposed hierarchically with four diagnosis frames, i.e., system level, subsystem level, component level and element level. Secondly, a hierarchical diagnosis model is expressed with four layers, i.e., sensors layer, function layer, behavior layer and structure layer. These layers are used to work together to accomplish the fault alarm, diagnosis and localization. Thirdly, a fault-tree-oriented hybrid knowledge representation based on frame and generalized rule and its relevant reasoning strategy is put forward. Finally, a diagnosis case for spacecraft power system is exemplified combining the above with a powerful expert system development tool G2. 展开更多
关键词 spacecraft fault diagnosis fault tree hierarchical diagnosis model G2
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部