This paper presents a bi-level hybrid local search(BHLS)algorithm for the three-dimensional loading problem with balancing constraints(3DLP-B),where several rectangular boxes with even densities but different sizes ar...This paper presents a bi-level hybrid local search(BHLS)algorithm for the three-dimensional loading problem with balancing constraints(3DLP-B),where several rectangular boxes with even densities but different sizes are loaded into a single cubic bin to meet the requirements of the space or capacity utilization and the balance of the center of gravity.The proposed algorithm hybridizes a novel framed-layout procedure in which the concept of the core block and its generation strategy are introduced.Once the block-loading sequence has been determined,we can load one block at a time by the designed construction heuristic.Then,the double-search is introduced;its external search procedure generates a list of compact packing patterns while its internal search procedure is used to search the core-block frames and their best distribution locations.The approach is extensively tested on weakly to strongly heterogeneous benchmark data.The results show that it has better performance in improving space utilization rate and balanced condition of the placement than existed techniques:the overall averages from 79.85%to 86.45%were obtained for the balanced cases and relatively high space-usage rate of 89.44%was achieved for the unbalanced ones.展开更多
The high cost and low efficiency of full-scale vehicle experiments and numerical simulations limit the efficient development of armored vehicle occupant protection systems.The floor-occupant-seat local simulation mode...The high cost and low efficiency of full-scale vehicle experiments and numerical simulations limit the efficient development of armored vehicle occupant protection systems.The floor-occupant-seat local simulation model provides an alternative solution for quickly evaluating the performance of occupant protection systems.However,the error and rationality of the loading of the thin-walled floor in the local model cannot be ignored.This study proposed an equivalent loading method for the local model,which includes two parts:the dimensionality reduction method for acceleration matrix and the joint optimization framework for equivalent node coordinates.In the dimensionality reduction method,the dimension of the acceleration matrix was reduced based on the improved kernel principal component analysis(KPCA),and a dynamic variable bandwidth was introduced to address the limitation of failing to effectively measure the similarity between acceleration data in conventional KPCA.In addition,a least squares problem with forced displacement constraints was constructed to solve the correction matrix,thereby achieving the scale restoration process of the principal component acceleration matrix.The joint optimization framework for coordinates consists of the error assessment of response time histories(EARTH)and Bayesian optimization.In this framework,the local loading error of the equivalent acceleration matrix is taken as the Bayesian optimization objective,which is quantified and scored by EARTH.The expected improvement acquisition function was used to select the new set of the equivalent acceleration node coordinates for the self-updating optimization of the observation dataset and Gaussian process surrogate model.We reduced the dimension of the acceleration matrix from 2256 to 7,while retaining 91%of the information features.The comprehensive error score of occupant's lower limb response in the local model increased from 58.5%to 80.4%.The proposed equivalent loading method provides a solution for the rapid and reliable development of occupant protection systems.展开更多
Fatigue has become critical issue for bridge with orthotropic steel deck.Number of stress cycle and equivalent stress amplitude were adopted as two investigated fatigue effects.As presented from fatigue monitoring com...Fatigue has become critical issue for bridge with orthotropic steel deck.Number of stress cycle and equivalent stress amplitude were adopted as two investigated fatigue effects.As presented from fatigue monitoring comparison of two series-lined bridges,three local geometric parameters of steel box girder have significant influence on fatigue performance of two welded joints.They are thickness of longitudinal ribs(Tr),longitudinal spacing of transverse floor plate(Sc)and longitudinal truss(LT).Fatigue analytical models were created for parametric study of fatigue effects under wheel load.Consequently,three local parameters have exhibited insignificant influence on number of stress cycle.Compared with Tr and Sc,configuration of LT has brought about foremost effect on the equivalent stress amplitude.For equivalent stress amplitude of rib-to-deck and rib-to-rib welded joints,the influence regions of LT are respectively longitudinal strap and quadrate with the geometric length of 600 mm.Enough attention ought to be paid for local stiffen structure on fatigue performance of orthotropic steel deck in fatigue design and monitoring.展开更多
超短期电力负荷预测作为电力系统的基本组成,能为生产调度计划的制定提供重要依据。然而,电力负荷具有非线性、时变性和不确定性,充分挖掘其潜在特征并分别预测,是提升预测准确性的关键。提出一种基于自适应局部迭代滤波(adaptive local...超短期电力负荷预测作为电力系统的基本组成,能为生产调度计划的制定提供重要依据。然而,电力负荷具有非线性、时变性和不确定性,充分挖掘其潜在特征并分别预测,是提升预测准确性的关键。提出一种基于自适应局部迭代滤波(adaptive local iterative filtering,ALIF)的BiGRU-Attention-XGBoost电力负荷组合预测模型。该模型基于ALIF-SE实现将历史负荷序列分解重组为周期序列、波动序列和趋势序列;通过Attention机制对BiGRU模型进行改进,并结合XGBoost模型构建基于时变权重组合的电力负荷预测模型。实验分析表明,输入模型数据经过ALIF-SE处理后预测精度有明显提升;所提组合模型在工作日和节假日均具有较好的预测效果,预测误差大部分在5%以下;通过在不同负荷数据集下进行实验对比,验证了所提预测方法的可迁移性。实验结果证明,所提模型具有有效性、准确性和可行性。展开更多
在大规模分布式存储系统的广泛应用背景下,传统容错编码方案在单盘和双盘故障修复过程中面临读取资源消耗高、修复效率不足等技术难题,提出一种具有局部修复特性的混合校验编码方案——VC-code(vertical central symmetric code)。VC-c...在大规模分布式存储系统的广泛应用背景下,传统容错编码方案在单盘和双盘故障修复过程中面临读取资源消耗高、修复效率不足等技术难题,提出一种具有局部修复特性的混合校验编码方案——VC-code(vertical central symmetric code)。VC-code通过融合横纵式阵列码的快速修复与负载均衡特性,设计了一种局部水平校验与对角校验交叉融合的结构,并采用纵向中心对称校验布局优化数据依赖关系。该设计将单盘和双盘故障修复的数据读取量显著降低,同时通过缩短修复链提升整体效率。理论分析表明,在单双盘故障恢复时大幅降低了数据读取开销。实验结果进一步验证了其性能优势,与RDP码、LRRDP码以及DRDP码相比,VC-code在单盘故障修复时间上减少了10.45%~29.57%,在双盘故障修复时间上减少了6.35%~33.24%。展开更多
基金Project(16B134)supported by Hunan Provincial Department of Education,China
文摘This paper presents a bi-level hybrid local search(BHLS)algorithm for the three-dimensional loading problem with balancing constraints(3DLP-B),where several rectangular boxes with even densities but different sizes are loaded into a single cubic bin to meet the requirements of the space or capacity utilization and the balance of the center of gravity.The proposed algorithm hybridizes a novel framed-layout procedure in which the concept of the core block and its generation strategy are introduced.Once the block-loading sequence has been determined,we can load one block at a time by the designed construction heuristic.Then,the double-search is introduced;its external search procedure generates a list of compact packing patterns while its internal search procedure is used to search the core-block frames and their best distribution locations.The approach is extensively tested on weakly to strongly heterogeneous benchmark data.The results show that it has better performance in improving space utilization rate and balanced condition of the placement than existed techniques:the overall averages from 79.85%to 86.45%were obtained for the balanced cases and relatively high space-usage rate of 89.44%was achieved for the unbalanced ones.
基金supported by the National Natural Science Foundation of China(Grant Nos.52272437 and 52272370)the Postgraduate Research&Practice Innovation Program of Jiangsu Province(KYCX24_0635)。
文摘The high cost and low efficiency of full-scale vehicle experiments and numerical simulations limit the efficient development of armored vehicle occupant protection systems.The floor-occupant-seat local simulation model provides an alternative solution for quickly evaluating the performance of occupant protection systems.However,the error and rationality of the loading of the thin-walled floor in the local model cannot be ignored.This study proposed an equivalent loading method for the local model,which includes two parts:the dimensionality reduction method for acceleration matrix and the joint optimization framework for equivalent node coordinates.In the dimensionality reduction method,the dimension of the acceleration matrix was reduced based on the improved kernel principal component analysis(KPCA),and a dynamic variable bandwidth was introduced to address the limitation of failing to effectively measure the similarity between acceleration data in conventional KPCA.In addition,a least squares problem with forced displacement constraints was constructed to solve the correction matrix,thereby achieving the scale restoration process of the principal component acceleration matrix.The joint optimization framework for coordinates consists of the error assessment of response time histories(EARTH)and Bayesian optimization.In this framework,the local loading error of the equivalent acceleration matrix is taken as the Bayesian optimization objective,which is quantified and scored by EARTH.The expected improvement acquisition function was used to select the new set of the equivalent acceleration node coordinates for the self-updating optimization of the observation dataset and Gaussian process surrogate model.We reduced the dimension of the acceleration matrix from 2256 to 7,while retaining 91%of the information features.The comprehensive error score of occupant's lower limb response in the local model increased from 58.5%to 80.4%.The proposed equivalent loading method provides a solution for the rapid and reliable development of occupant protection systems.
基金Project(51178100)supported by the National Natural Science Foundation of ChinaProject(2011318223170)supported by Key Program of Ministry of Transport,China+3 种基金Project(1105007001)supported by Program of the Priority Academic Development Program of Jiangsu Higher Education Institutions,ChinaProject(3205001205)supported by Teaching and Research Foundation for Excellent Young Teacher of Southeast University,ChinaProject(CXZZ-0162)supported by Graduate Scientific Innovation Research Foundation of Jiangsu Province,ChinaProject(YBJJ1122)supported by Scientific Research Foundation of Graduate School of Southeast University,China
文摘Fatigue has become critical issue for bridge with orthotropic steel deck.Number of stress cycle and equivalent stress amplitude were adopted as two investigated fatigue effects.As presented from fatigue monitoring comparison of two series-lined bridges,three local geometric parameters of steel box girder have significant influence on fatigue performance of two welded joints.They are thickness of longitudinal ribs(Tr),longitudinal spacing of transverse floor plate(Sc)and longitudinal truss(LT).Fatigue analytical models were created for parametric study of fatigue effects under wheel load.Consequently,three local parameters have exhibited insignificant influence on number of stress cycle.Compared with Tr and Sc,configuration of LT has brought about foremost effect on the equivalent stress amplitude.For equivalent stress amplitude of rib-to-deck and rib-to-rib welded joints,the influence regions of LT are respectively longitudinal strap and quadrate with the geometric length of 600 mm.Enough attention ought to be paid for local stiffen structure on fatigue performance of orthotropic steel deck in fatigue design and monitoring.
文摘超短期电力负荷预测作为电力系统的基本组成,能为生产调度计划的制定提供重要依据。然而,电力负荷具有非线性、时变性和不确定性,充分挖掘其潜在特征并分别预测,是提升预测准确性的关键。提出一种基于自适应局部迭代滤波(adaptive local iterative filtering,ALIF)的BiGRU-Attention-XGBoost电力负荷组合预测模型。该模型基于ALIF-SE实现将历史负荷序列分解重组为周期序列、波动序列和趋势序列;通过Attention机制对BiGRU模型进行改进,并结合XGBoost模型构建基于时变权重组合的电力负荷预测模型。实验分析表明,输入模型数据经过ALIF-SE处理后预测精度有明显提升;所提组合模型在工作日和节假日均具有较好的预测效果,预测误差大部分在5%以下;通过在不同负荷数据集下进行实验对比,验证了所提预测方法的可迁移性。实验结果证明,所提模型具有有效性、准确性和可行性。
文摘在大规模分布式存储系统的广泛应用背景下,传统容错编码方案在单盘和双盘故障修复过程中面临读取资源消耗高、修复效率不足等技术难题,提出一种具有局部修复特性的混合校验编码方案——VC-code(vertical central symmetric code)。VC-code通过融合横纵式阵列码的快速修复与负载均衡特性,设计了一种局部水平校验与对角校验交叉融合的结构,并采用纵向中心对称校验布局优化数据依赖关系。该设计将单盘和双盘故障修复的数据读取量显著降低,同时通过缩短修复链提升整体效率。理论分析表明,在单双盘故障恢复时大幅降低了数据读取开销。实验结果进一步验证了其性能优势,与RDP码、LRRDP码以及DRDP码相比,VC-code在单盘故障修复时间上减少了10.45%~29.57%,在双盘故障修复时间上减少了6.35%~33.24%。
文摘最小负载着色问题(minimum load coloring problem,MLCP)源于构建光通信网络的波分复用(wavelength division multiplexing,WDM)技术,是一个被证明的NP完全问题.由于NP完全问题有着随问题规模呈指数增长的解空间,因此启发式算法常被用来解决这类问题.在对国内外相关工作的深入分析基础上得知,现有的多类求解MLCP问题的启发式算法中局部搜索算法表现是最好的.研究针对当前求解MLCP问题的局部搜索算法在数据预处理和邻域空间搜索上的不足,提出了两点相应的优化策略:一是在数据的预处理阶段,提出一度顶点规则来约简数据的规模,进而减小MLCP问题的搜索空间;二是在算法的邻域空间搜索阶段,提出两阶段多重选择策略(twostage best from multiple selections,TSBMS)来帮助局部搜索算法在面对不同规模的邻域空间时可以高效地选择一个高质量的邻居解,它有效地提高了局部搜索算法在处理不同规模数据时的求解表现.将这个优化后的局部搜索算法命名为IRLTS.采用74个经典的测试用例来验证IRLTS算法的有效性.实验结果表明,无论最优解还是平均解,IRLTS算法在大多数测试用例上都明显优于当前表现最好的3个局部搜索算法.此外,还通过实验验证了所提策略的有效性以及分析了关键参数对算法的影响.