期刊文献+
共找到1,190篇文章
< 1 2 60 >
每页显示 20 50 100
跨模态多层特征融合的遥感影像语义分割 被引量:2
1
作者 李智杰 程鑫 +3 位作者 李昌华 高元 薛靖裕 介军 《计算机科学与探索》 北大核心 2025年第4期989-1000,共12页
多模态语义分割网络能够利用不同模态中的互补信息来提高分割精度,在地物分类领域具有广泛的应用潜力。然而,现有的多模态遥感影像语义分割模型大多忽略了深度特征的几何形状信息,未将多层特征充分利用就进行融合,导致跨模态特征提取不... 多模态语义分割网络能够利用不同模态中的互补信息来提高分割精度,在地物分类领域具有广泛的应用潜力。然而,现有的多模态遥感影像语义分割模型大多忽略了深度特征的几何形状信息,未将多层特征充分利用就进行融合,导致跨模态特征提取不充分,融合效果不理想。针对这些问题,提出了一种基于多模态特征提取和多层特征融合的遥感影像语义分割模型。通过构建双分支编码器,模型能够分别提取遥感影像的光谱信息和归一化数字表面模型(nDSM)的高程信息,并深入挖掘nDSM的几何形状信息。引入跨层丰富模块细化完善每层特征,从深层到浅层充分利用多层的特征信息。完善后的特征通过注意力特征融合模块,对特征进行差异性互补和交叉融合,以减轻分支结构之间的差异,充分发挥多模态特征的优势,从而提高遥感影像分割精度。在ISPRS Vaihingen和Potsdam数据集上进行实验,mF1分数分别达到了90.88%和93.41%,平均交互比(mIoU)分别达到了83.49%和87.85%,相较于当前主流算法,该算法实现了更准确的遥感影像语义分割。 展开更多
关键词 遥感影像 归一化数字表面模型(nDSM) 语义分割 特征提取 特征融合
在线阅读 下载PDF
特征级语义感知引导的多模态图像融合算法 被引量:1
2
作者 张梅 金叶 +1 位作者 朱金辉 贺霖 《电子与信息学报》 北大核心 2025年第8期2909-2918,共10页
在自动驾驶领域,红外和可见光的融合图像因其能够提供显著目标和丰富的纹理细节而备受关注。然而现有的大部分融合算法单方面关注融合图像的视觉质量和评价指标,而忽略了高级视觉任务的需求。另外,虽然一些融合方法尝试结合高级视觉任务... 在自动驾驶领域,红外和可见光的融合图像因其能够提供显著目标和丰富的纹理细节而备受关注。然而现有的大部分融合算法单方面关注融合图像的视觉质量和评价指标,而忽略了高级视觉任务的需求。另外,虽然一些融合方法尝试结合高级视觉任务,但是其效果受限于语义先验和融合任务之间的交互不足且没有考虑到不同特征差异性的影响。因此,该文提出了特征级语义感知引导的多模态图像融合算法,使语义先验知识与融合任务进行充分交互,提高融合结果在后续的分割任务中的性能。对于语义特征和融合图像特征两者的差异性,提出了双特征交互模块,以实现不同特征的充分交互和选择。对于红外和可见光两种不同模态特征的差异性,提出了多源空间注意力融合模块,以实现不同模态信息的有效集成和互补。该文在3个公共数据集上进行了实验,结果表明该方法的融合结果优于其他方法且泛化能力较好,而且在各种融合算法联合分割任务的性能比较实验中也表明了该方法在分割任务中的优越性。 展开更多
关键词 图像融合 联合分割任务 语义感知 特征级引导
在线阅读 下载PDF
融合动态特征增强的遥感建筑物分割 被引量:1
3
作者 肖振久 田昊 +1 位作者 张杰浩 曲海成 《光电工程》 北大核心 2025年第3期12-24,共13页
针对遥感地物建筑物图像目标尺度差异大、样本空间分布不均衡、地物边界模糊、场景区域跨度大所导致的分割效果不佳问题,本文提出一种融合动态特征增强高精度遥感建筑物分割算法。首先,构建New_GhostNetV2网络,利用自适应上下文感知卷积... 针对遥感地物建筑物图像目标尺度差异大、样本空间分布不均衡、地物边界模糊、场景区域跨度大所导致的分割效果不佳问题,本文提出一种融合动态特征增强高精度遥感建筑物分割算法。首先,构建New_GhostNetV2网络,利用自适应上下文感知卷积,增强算法对样本空间特征的捕捉能力。其次,采用Ghost Convolution结合跳跃连接和特征分支策略设计多层级信息增强模块,增强特征整合。随后引入级联注意力CGA(cascaded group attention),通过组内独立注意力计算,加强模型对多样化地物形态的适应性。最后,通过动态深度特征增强器构造特征融合模块,进一步加强模型捕获能力。在WHU数据集上实验结果表明:改进算法较基线模型F1-Score提高8.57%,mIoU提高12.48%,与其他主流语义分割模型相比,改进DeepLabv3+具有更好的分割精度。 展开更多
关键词 遥感图像 语义分割 特征增强 信息整合
在线阅读 下载PDF
结合注意力特征融合的路面裂缝检测 被引量:2
4
作者 谢永华 厉涛 柏勇 《计算机工程与设计》 北大核心 2025年第1期307-313,共7页
为解决路面裂缝检测中裂缝漏检和定位不准的问题,提出一个结合注意力特征融合的可端到端训练的路面裂缝检测网络。基于Resnet-50结构设计,在特征融合部分添加注意力特征融合模块,通过注意力掩码学习,动态调整浅层特征与深层特征融合权重... 为解决路面裂缝检测中裂缝漏检和定位不准的问题,提出一个结合注意力特征融合的可端到端训练的路面裂缝检测网络。基于Resnet-50结构设计,在特征融合部分添加注意力特征融合模块,通过注意力掩码学习,动态调整浅层特征与深层特征融合权重,突出有用信息,解决裂缝漏检问题;在编码器部分,改进浅层特征与深层特征的选取方式,提升特征融合效果和检测精度。实验结果表明,该网络在各项指标上均优于其它对比网络,具有较高的检测精度。 展开更多
关键词 裂缝检测 深度学习 语义分割 卷积网络 注意力机制 特征融合 特征提取
在线阅读 下载PDF
复杂场景下传送带实时偏移检测 被引量:1
5
作者 宫法明 兰光诚 牛博 《计算机工程与应用》 北大核心 2025年第5期269-278,共10页
传送带在工业生产线和物流系统中扮演着重要的角色,然而传送带的偏移可能导致生产效率下降、质量损失以及生产线堵塞等问题。针对传统传送带偏移检测算法存在特征提取困难、缺乏通用性、实时性差等问题,提出了一种基于REO的传送带实时... 传送带在工业生产线和物流系统中扮演着重要的角色,然而传送带的偏移可能导致生产效率下降、质量损失以及生产线堵塞等问题。针对传统传送带偏移检测算法存在特征提取困难、缺乏通用性、实时性差等问题,提出了一种基于REO的传送带实时偏移检测算法,该算法主要由三部分组成:传送带区域提取、边缘线检测、偏移量计算。通过提出的UNet-CRFs网络从视频图像中精确分割出传送带区域,极大地降低了背景干扰对检测结果的影响,同时增加特征增强与区域提取模块细化分割结果;相较于传统方法只检测传送带外侧两条边缘线,提出的边缘线检测算法(CH-LaneNet)分别对传送带及物料区域的边缘进行提取,同时识别并消除冗余的边缘线;设计了一种偏移判定策略,通过几何方法计算偏移量并构建数学模型,实现传送带偏移检测,避免了传统方法中易发生的图像偏移失真等情况。实验结果表明,所提出的方法在传送带区域提取的像素精度达到了98.21%,边缘线检测任务的像素精度达到96.49%,F1分数为80.40%,偏移量算法的AUC为85%,证明提出的方法对传送带偏移检测具有有效性。 展开更多
关键词 传送带 语义分割 特征提取 偏移检测
在线阅读 下载PDF
基于自注意力机制的高分遥感影像语义分割 被引量:2
6
作者 杨军 张金影 康玥 《哈尔滨工程大学学报》 北大核心 2025年第2期344-354,共11页
针对遥感影像多尺度特征提取困难、上下文信息利用不足的问题,本文结合自注意力机制和深度可分离卷积提出一种线性多头自注意力网络模型,适用于高分辨率遥感影像语义分割。在自注意力模块之前引入深度可分离卷积,减少计算量的同时有助... 针对遥感影像多尺度特征提取困难、上下文信息利用不足的问题,本文结合自注意力机制和深度可分离卷积提出一种线性多头自注意力网络模型,适用于高分辨率遥感影像语义分割。在自注意力模块之前引入深度可分离卷积,减少计算量的同时有助于捕获局部特征;在编码器分支中提出线性的多头自注意力模块以降低模型的计算复杂度;设计一个解码器来恢复特征图分辨率,通过级联操作整合各层级的特征并生成高分辨率的语义分割结果。所提算法在ISPRS Vaihingen和Potsdam数据集上的分割结果的mF1分别达到了90.77%和92.36%,与目前主流算法相比,不透水表面、建筑、低矮植物、树木类的分割准确率及总体分割准确率均有提高。本文算法构建的线性多头自注意力网络是一种高效的高分辨率遥感影像语义分割模型。 展开更多
关键词 高分辨率遥感影像 多头自注意力 深度可分离卷积 语义分割 特征提取 卷积神经网络 编码器 解码器
在线阅读 下载PDF
一种基于多尺度特征和有效注意力的病理图像分割方法
7
作者 王建宇 王朝立 +1 位作者 孙占全 刘晓虹 《小型微型计算机系统》 北大核心 2025年第6期1416-1426,共11页
病理图像分割作为病理学图像分析的一项重要任务,为医生对患者的病情进行诊断以及后续治疗方案的制定起到了至关重要的作用.然而,病理图像因其复杂的结构,例如血管、空洞、图像中病变区域与正常区域间边界模糊及对比差异小等问题,使得... 病理图像分割作为病理学图像分析的一项重要任务,为医生对患者的病情进行诊断以及后续治疗方案的制定起到了至关重要的作用.然而,病理图像因其复杂的结构,例如血管、空洞、图像中病变区域与正常区域间边界模糊及对比差异小等问题,使得现有模型分割效果不理想.因此,本文提出了一种基于多尺度特征和有效注意力的病理图像分割模型,其挑战性困难在于如何有效地利用空间和通道的相关性从病理图像中精确分割边界平滑的癌变组织.首先,该模型用金字塔视觉Transformer架构对输入图像提取包含丰富语义信息的多尺度特征,再用级联融合解码器对高层特征进行聚合,得到全局映射图指导后续解码过程.其次,在解码器部分,提出局部增强的反向注意力模块和联合注意力模块对级联解码器中的特征进行有效处理.最后,使用深度监督的方式对模型进行有效训练,并将提出的方法在3个病理图像数据集上与多个先进的分割模型进行对比实验.大量的定性以及定量结果显示,本文提出的方法比其他模型表现出更好的性能,可以对病理图像进行有效的分割. 展开更多
关键词 病理图像 语义分割 多尺度特征 注意力机制 TRANSFORMER
在线阅读 下载PDF
不均衡少标签样本下基于语义自动编码网络的高光谱图像分类
8
作者 孙宝刚 何国斌 《红外技术》 北大核心 2025年第4期429-436,共8页
为了提升不均衡少标签样本下高光谱图像分类性能,本文提出了一种改进的语义自动编码网络,该网络首先将高光谱的类别标签信息引入到语义自编码网络模型中,通过将不同数据集的原始数据及标签信息分别映射至同一特征空间以建立已知类别和... 为了提升不均衡少标签样本下高光谱图像分类性能,本文提出了一种改进的语义自动编码网络,该网络首先将高光谱的类别标签信息引入到语义自编码网络模型中,通过将不同数据集的原始数据及标签信息分别映射至同一特征空间以建立已知类别和未知类别的关联,然后将该对应关系应用于未知数据集进行标签推理,并构建基于图正则化项的目标函数以保存数据集中特征流形结构,最后采用交替方向乘子法将全局问题分解为多个较小、较容易求解的局部子问题,最终获得全局最优解。实验选取3个具有不同的光谱维度、光谱带数量和土地覆盖类型的高光谱数据集进行处理,可以满足实验数据的多样性。结果表明,本文所提方法的分类结果具有较高的分类精度,其分类结果与基准结果比较相近,适合工程上对非均衡高光谱图像数据分类。 展开更多
关键词 高光谱图像 地物分类 深度学习 语义自动编码网络 语义关联 特征映射
在线阅读 下载PDF
DockDepend:一种Dockerfile指令行依赖关系抽取方法
9
作者 陈铁明 钟云锦 +2 位作者 朱志凌 王婷 宋琪杰 《小型微型计算机系统》 北大核心 2025年第10期2478-2486,共9页
针对Dockerfile指令行间依赖关系判断精度差、效率低的问题,提出了Dockerfile指令行依赖关系抽取方法DockDepend.通过数据处理模块抽取各指令行的特征信息,转换为统一的Meta特征结构,结合覆盖全指令组合的依赖判定规则,DockDepend可实... 针对Dockerfile指令行间依赖关系判断精度差、效率低的问题,提出了Dockerfile指令行依赖关系抽取方法DockDepend.通过数据处理模块抽取各指令行的特征信息,转换为统一的Meta特征结构,结合覆盖全指令组合的依赖判定规则,DockDepend可实现精准高效的依赖关系判断.实验结果表明,DockDepend的精准度显著优于基于关键词匹配方法和基于大语言模型的方法,平均准确率提升64.02%和44.17%.同时,DockDepend在处理效率方面明显优于人工手动标注和大语言模型,对于不同长度的Dockerfile解析速度均稳定在秒级.DockDepend实现了精准高效的Dockerfile指令行间依赖关系抽取,为Docker构建过程的优化和自动化提供了有力的技术支持. 展开更多
关键词 Dockerfile 依赖判断 语义补充 AST分析 特征提取
在线阅读 下载PDF
话题性话语标记的自动识别与分类
10
作者 杨进才 余漠洋 +1 位作者 胡满 肖明 《计算机科学》 北大核心 2025年第4期255-261,共7页
话语标记(Discourse Markers)是一种语言标记,具有组织语篇、引导指意、显示情感的作用,因而受到语言学界的广泛关注。对话语标记及其类别的准确识别,对于篇章理解、说话人意图和情感的把握有重要作用。近十年来,国内外学者对话语标记... 话语标记(Discourse Markers)是一种语言标记,具有组织语篇、引导指意、显示情感的作用,因而受到语言学界的广泛关注。对话语标记及其类别的准确识别,对于篇章理解、说话人意图和情感的把握有重要作用。近十年来,国内外学者对话语标记的功能、特征、来源和系统分类展开研究并取得了丰富的成果。然而,因话语标记形式多变、来源多样、特征抽象、变体繁多,机器自动识别的难度较大。对此,以话题性话语标记为研究对象,提出一种融合外部语言学特征的NFLAT指针网络模型,实现对语篇中话语标记的自动识别和分类。经实验检验,训练后模型对话题性话语标记的识别及分类精确率(P值)达94.55%。 展开更多
关键词 话语标记 语义增强 特征融合 自动识别与分类
在线阅读 下载PDF
基于混合深度卷积的遥感影像语义分割
11
作者 田智慧 郎杰 魏海涛 《计算机应用与软件》 北大核心 2025年第8期253-258,290,共7页
高分辨率遥感影像语义分割作为遥感解译的重要组成部分,其中包含了大量复杂的地物特征信息,且不同地物目标尺寸相差较大,这为遥感影像语义分割带来了一定困难。针对该问题,设计并实现一种基于混合深度卷积的遥感影像语义分割模型MDU-Ne... 高分辨率遥感影像语义分割作为遥感解译的重要组成部分,其中包含了大量复杂的地物特征信息,且不同地物目标尺寸相差较大,这为遥感影像语义分割带来了一定困难。针对该问题,设计并实现一种基于混合深度卷积的遥感影像语义分割模型MDU-Net。该模型在编码器中采用分阶段的并行网络结构,通过对不同层级中子分支动态的分配权重来实现编码器的动态网络结构,同时引入一种通道和空间注意力模块来改进编码器到解码器的特征融合效果,提升语义分割效果。在ISPRS validation数据集上的测试集精度比DeepLabv3+提高3.44百分点。实验结果表明,该网络在高分辨率遥感影像分割问题中取得了良好的分割效果。 展开更多
关键词 语义分割 遥感影像 深度学习 特征融合
在线阅读 下载PDF
自适应空间与分组注意的激光点云分割方法
12
作者 李庆祥 覃丽萍 罗训 《激光与红外》 北大核心 2025年第6期893-900,共8页
随着激光点云数据的普及,研究如何提取丰富的点云特征信息变得尤为重要。现有方法多注重局部特征学习,却忽视了点云的位置与特征间的关联,且未对全局信息进行建模。为改进此状况,本文提出了自适应空间特征模块(Adaptive Spatial Feature... 随着激光点云数据的普及,研究如何提取丰富的点云特征信息变得尤为重要。现有方法多注重局部特征学习,却忽视了点云的位置与特征间的关联,且未对全局信息进行建模。为改进此状况,本文提出了自适应空间特征模块(Adaptive Spatial Feature, ASF)和分组注意力(GroupFormer)。ASF包括自适应特征块(adaptive feature block)和混合局部块(mixed local block),其可以动态学习点云位置与特征之间关系以及消除均匀加权。混合局部块将局部最大值特征数据与局部自适应特征数据结合起来,以保留局部上下文细节。ASF融入编码器-解码器结构形成ASF-Net网络,同时引入分组注意力以提取全局点云特征信息。实验表明,ASF-Net在S3DIS和ScanNet v2数据集上的语义分割性能卓越,提高了点云特征提取的准确性。 展开更多
关键词 点云语义分割 自适应空间特征模块 自适应特征块 混合局部块 分组注意力
在线阅读 下载PDF
融合多元特征的E-TransUNet模型施工道路要素分类
13
作者 胡荣明 张宵宵 +2 位作者 竞霞 廖雨欣 黄旭昆 《遥感信息》 北大核心 2025年第2期11-19,共9页
针对施工道路影像中因背景信息复杂导致道路提取错分、漏分及边缘粗糙的问题,提出了一种融合多元特征的E-TransUNet模型施工道路要素提取方法。E-TransUNet模型通过设计多元特征增强模块对图像特征信息进行增强;在模型下采样中融入空洞... 针对施工道路影像中因背景信息复杂导致道路提取错分、漏分及边缘粗糙的问题,提出了一种融合多元特征的E-TransUNet模型施工道路要素提取方法。E-TransUNet模型通过设计多元特征增强模块对图像特征信息进行增强;在模型下采样中融入空洞空间金字塔池化(atrous spatial pyramid pooling,ASPP)模块,增强网络对道路影像多尺度特征的提取能力;跳跃连接部分加入卷积注意力(convolutional block attention module,CBAM)模块,从不同维度上捕获道路特征之间的相关性;最后组合采用Dice loss和CE loss作为损失函数解决样本数量不均衡问题。结果表明,该方法对施工道路要素的提取在OA、MIoU和MPA指标分别达到了93.30%、80.37%和91.19%,相比其他网络U-Net、DeeplabV3+、Swin-Unet、HRNet和SegFormer提取效果更好,为施工道路提供了准确的要素提取方法。 展开更多
关键词 施工道路提取 特征增强 语义分割 TRANSFORMER 图像处理
在线阅读 下载PDF
基于双分支多尺度特征融合的跨模态语义分割算法
14
作者 陈广秋 任天蓉 +1 位作者 段锦 黄丹丹 《电子测量与仪器学报》 北大核心 2025年第5期144-154,共11页
针对单模态可见光RGB图像语义分割在夜晚或光线变化环境下存在分割效果差、目标边缘分割不清晰等问题,以及现有的跨模态语义分割在获取全局上下文信息和融合跨模态特征时还存在大量不足。为此提出了一种基于双分支多尺度特征融合的跨模... 针对单模态可见光RGB图像语义分割在夜晚或光线变化环境下存在分割效果差、目标边缘分割不清晰等问题,以及现有的跨模态语义分割在获取全局上下文信息和融合跨模态特征时还存在大量不足。为此提出了一种基于双分支多尺度特征融合的跨模态语义分割算法。采用Segformer作为主干网络提取特征,捕获长距离依赖关系,采用特征增强模块提升浅层特征图的对比度和边缘信息的判别性,利用有效注意力增强模块和跨模态特征融合模块,对不同模态特征图像素点间的关系进行建模,聚合互补信息,发挥跨模态特征优势。最后,采用轻量级的All-MLP解码器重建图像,预测分割结果。相比较于已有主流算法,该算法在MFNet城市街景数据集上的各项评估指标均为最优,平均准确率(mAcc)和平均交并比(mIoU)分别达到了76.9%和59.8%。实验结果表明,该算法在处理复杂场景时,能够有效改善目标边缘轮廓分割不清晰的问题,提高图像的分割精度。 展开更多
关键词 多模态深度学习 语义分割 特征融合 跨模态 Segformer
在线阅读 下载PDF
基于多语义关联与融合的视觉问答模型
15
作者 周浩 王超 +1 位作者 崔国恒 罗廷金 《计算机应用》 北大核心 2025年第3期739-745,共7页
弥合视觉图像和文本问题之间的语义差异是提高视觉问答(VQA)模型推理准确性的重要方法之一。然而现有的相关模型大多数基于低层图像特征的提取并利用注意力机制推理问题的答案,忽略了高层图像语义特征如关系和属性特征等在视觉推理中的... 弥合视觉图像和文本问题之间的语义差异是提高视觉问答(VQA)模型推理准确性的重要方法之一。然而现有的相关模型大多数基于低层图像特征的提取并利用注意力机制推理问题的答案,忽略了高层图像语义特征如关系和属性特征等在视觉推理中的作用。为解决上述问题,提出一种基于多语义关联与融合的VQA模型以建立问题与图像之间的语义联系。首先,基于场景图生成框架提取图像中的多种语义并把它们进行特征精炼后作为VQA模型的特征输入,从而充分挖掘图像场景中的信息;其次,为提高图像特征的语义价值,设计一个信息过滤器过滤图像特征中的噪声和冗余信息;最后,设计多层注意力融合和推理模块将多种图像语义分别与问题特征进行语义融合,以强化视觉图像重点区域与文本问题之间的语义关联。与BAN(Bilinear Attention Network)和CFR(Coarse-to-Fine Reasoning)模型的对比实验结果表明,所提模型在VQA2.0测试集上的准确率分别提高了2.9和0.4个百分点,在GQA测试集上的准确率分别提高了17.2和0.3个百分点。这表明所提模型能够更好地理解图像场景中的语义并回答组合式视觉问题。 展开更多
关键词 多语义特征融合 视觉问答 场景图 属性注意力 关系注意力
在线阅读 下载PDF
一种基于轻量化卷积模块的语义分割网络
16
作者 连晓峰 康毛毛 +1 位作者 谭励 王艳莉 《应用科学学报》 北大核心 2025年第1期66-79,共14页
融合深度学习的语义同步定位与地图构建技术为处理动态场景提供了有效的解决方案,但仍面临计算资源消耗大和模型复杂度高的挑战。为此,提出了一种基于BlendMask改进的轻量化语义分割网络。首先,设计了一种轻量的GDS-ECA卷积(Ghost-depth... 融合深度学习的语义同步定位与地图构建技术为处理动态场景提供了有效的解决方案,但仍面临计算资源消耗大和模型复杂度高的挑战。为此,提出了一种基于BlendMask改进的轻量化语义分割网络。首先,设计了一种轻量的GDS-ECA卷积(Ghost-depthwise separable convolution with efficient channel attention)模块,利用深度可分离卷积替代Ghost卷积中的少量卷积操作,减少参数量和计算量,并添加注意力机制提升特征表达能力。其次,提出了特征提取网络BGTNet(bottleneck GDS-ECA attention transformer network),将GDS-ECA卷积应用于颈部模块的卷积层以提升网络的提取精度;此外,将特征金字塔网络(feature pyramid network,FPN)中的传统卷积替换为GDS-ECA卷积,构建轻量化特征金字塔网络,并结合BGTNet形成语义分割网络的主干网。最后在数据集COCO上进行了实验验证,改进后的模型处理图像时间缩短了7.3 ms,平均精度提升了1.5%。 展开更多
关键词 语义分割 同步定位与地图构建 轻量化 注意力机制 特征金字塔
在线阅读 下载PDF
基于自然语言语义感知的舆情分析算法设计
17
作者 刘云花 黎泉 《现代电子技术》 北大核心 2025年第22期133-137,共5页
针对自然语言语义感知中的舆情情感分析问题,文中提出一种基于Transformer预处理和通道注意力机制的综合舆情分析算法。该算法采用两层Transformer结构对样本输入信息进行预处理,提取出舆情关键词。对于经过Transformer处理后的输入样... 针对自然语言语义感知中的舆情情感分析问题,文中提出一种基于Transformer预处理和通道注意力机制的综合舆情分析算法。该算法采用两层Transformer结构对样本输入信息进行预处理,提取出舆情关键词。对于经过Transformer处理后的输入样本数据,在每一个时间步长中,采用选取当前输入和上一步长的隐藏状态共同输入处理的方法进行初始判断,用以决定前一隐藏状态是否有益于后续网络处理。在此基础上,进一步对不同特征通道的特征权重进行学习,分别进行全局最大池化和全局平均池化操作,实现动态调整通道特征对于整体结果的影响,筛选出有益于最终结果的特征通道并删除无效特征通道,最终经过Softmax层输出算法网络的预测分析结果。实验结果表明,所提算法相较于优化前原始算法的准确率提升了约8.79%,比主流经典算法的综合准确率高出约3.99%。 展开更多
关键词 自然语言 语义感知 舆情分析 TRANSFORMER 通道注意力机制 特征提取
在线阅读 下载PDF
对比学习改进文本生成图像方法的研究
18
作者 赵宏 王贺 李文改 《计算机工程与应用》 北大核心 2025年第14期264-273,共10页
针对现有文本生成图像方法中仅依赖图像和文本之间的语义相似度损失为约束,模型难以有效学习到图像与对应多个文本之间的关系,导致生成图像和文本之间语义匹配度低的问题,提出一种引入对比学习对文本生成图像模型改进的方法。在训练阶段... 针对现有文本生成图像方法中仅依赖图像和文本之间的语义相似度损失为约束,模型难以有效学习到图像与对应多个文本之间的关系,导致生成图像和文本之间语义匹配度低的问题,提出一种引入对比学习对文本生成图像模型改进的方法。在训练阶段,采用对比学习的方法,计算同一图像的不同文本生成图像之间的对比损失,使模型能够学习同一图像的不同文本表示,以提高生成图像和文本语义的一致性。同时,计算生成图像与真实图像之间的对比损失,保证生成图像向真实图像靠拢。在生成器中,设计一种新的特征融合模块,通过注意力图作为条件,引导图像特征与文本特征对齐,从而提高生成图像的细节表达。实验结果表明,与基准模型相比,在CUB数据集上的Inception Score分数提高了7.32%,Fréchet Inception Distance分数下降了21.06%;在COCO数据集上的Fréchet In-ception Distance分数下降了36.43%。证明该方法生成的图像具有更好的文本语义一致性和真实性。 展开更多
关键词 文本生成图像 生成对抗网络(GAN) 对比学习 特征融合 语义一致性
在线阅读 下载PDF
基于双分支融合与多尺度语义增强的裂缝检测
19
作者 李婕 李焕文 +3 位作者 涂静敏 刘钊 姚剑 李礼 《计算机工程与应用》 北大核心 2025年第22期329-338,共10页
细粒度裂缝作为路面裂缝形成早期阶段,对其进行检测和修复可以及早消除安全隐患,降低维护成本。细粒度裂缝除拓扑结构复杂外,还具有宽度微小、尺度多变的几何特征,在复杂路面背景下,现有方法容易出现漏检且对裂缝宽度感知精度不高的问... 细粒度裂缝作为路面裂缝形成早期阶段,对其进行检测和修复可以及早消除安全隐患,降低维护成本。细粒度裂缝除拓扑结构复杂外,还具有宽度微小、尺度多变的几何特征,在复杂路面背景下,现有方法容易出现漏检且对裂缝宽度感知精度不高的问题。针对此,提出了一种基于双分支选择性融合与多尺度语义增强的路面细粒度裂缝检测方法。设计了增强自注意力机制和卷积神经网络(convolutional neural network,CNN)的双分支并行主干网络,从局部和全局同时进行特征提取,逐层丰富特征表示;提出了冗余减少和选择性特征融合(redundancy reduction and feature selective fusion,RSF)模块,实现双分支全局和局部信息的学习和交互,增强特征的表达能力;采用了多尺度语义增强融合策略,通过跨尺度的信息传递和融合,提升模型对细粒度裂缝特征的感知能力。为了验证该方法的有效性和可靠性,在CrackTree260公共数据集上进行了训练和测试,并在CRKWH100数据集上评估模型的泛化性能。实验表明,所提出的方法在两个数据集上分别达到了0.909和0.918的ODS值,优于其他先进的裂缝检测方法。 展开更多
关键词 细粒度裂缝检测 自注意力机制 卷积神经网络(CNN) 多尺度特征融合 语义增强
在线阅读 下载PDF
基于特征增强的农业短文本语义智能匹配方法研究
20
作者 金宁 郭宇峰 +2 位作者 渠丽娜 缪祎晟 吴华瑞 《农业机械学报》 北大核心 2025年第5期395-404,共10页
针对农业短文本数据特征词语少、语义特征稀疏、冗余度高、价值密度低等问题,构建了一种利用多尺度通道注意力算法融合多语义特征的语义匹配模型Font_MBAFF,以提升农业短文本的语义匹配性能。首先利用汉字偏旁部首和四角号码丰富短文本... 针对农业短文本数据特征词语少、语义特征稀疏、冗余度高、价值密度低等问题,构建了一种利用多尺度通道注意力算法融合多语义特征的语义匹配模型Font_MBAFF,以提升农业短文本的语义匹配性能。首先利用汉字偏旁部首和四角号码丰富短文本特征;然后利用多尺度卷积核通道注意力加权网络MSCN和基于多头自注意力的双向长短期记忆网络Multi_SAB分别从空间和时间提取语义特征;最后利用文本注意力融合机制TEXTAFF对多种特征进行智能融合。试验结果表明,Font_MBAFF模型可有效弥补短文本特征词少的不足,优化文本特征提取及特征融合,语义匹配正确率达到96.42%,与MaLSTM、BiLSTM、BiLSTM_Self-attention、TEXTCNN_Attention、Sentence-BERT等5种语义匹配模型相比优势明显,正确率至少高2.07个百分点。 展开更多
关键词 农业短文本 语义匹配 字形特征表示 多特征融合
在线阅读 下载PDF
上一页 1 2 60 下一页 到第
使用帮助 返回顶部