In order to meet the demand of testability analysis and evaluation for complex equipment under a small sample test in the equipment life cycle, the hierarchical hybrid testability model- ing and evaluation method (HH...In order to meet the demand of testability analysis and evaluation for complex equipment under a small sample test in the equipment life cycle, the hierarchical hybrid testability model- ing and evaluation method (HHTME), which combines the testabi- lity structure model (TSM) with the testability Bayesian networks model (TBNM), is presented. Firstly, the testability network topo- logy of complex equipment is built by using the hierarchical hybrid testability modeling method. Secondly, the prior conditional prob- ability distribution between network nodes is determined through expert experience. Then the Bayesian method is used to update the conditional probability distribution, according to history test information, virtual simulation information and similar product in- formation. Finally, the learned hierarchical hybrid testability model (HHTM) is used to estimate the testability of equipment. Compared with the results of other modeling methods, the relative deviation of the HHTM is only 0.52%, and the evaluation result is the most accu rate.展开更多
针对利用海量数据构建分类模型时训练数据规模大、训练时间长且碳排放量大的问题,提出面向低能耗高性能的分类器两阶段数据选择方法TSDS(Two-Stage Data Selection)。首先,通过修正余弦相似度确定聚类中心,并将样本数据进行基于不相似...针对利用海量数据构建分类模型时训练数据规模大、训练时间长且碳排放量大的问题,提出面向低能耗高性能的分类器两阶段数据选择方法TSDS(Two-Stage Data Selection)。首先,通过修正余弦相似度确定聚类中心,并将样本数据进行基于不相似点的分裂层次聚类;其次,对聚类结果按数据分布自适应抽样以组成高质量的子样本集;最后,利用子样本集在分类模型上训练,在加速训练过程的同时提升模型精度。在Spambase、Bupa和Phoneme等6个数据集上构建支持向量机(SVM)和多层感知机(MLP)分类模型,验证TSDS的性能。实验结果表明在样本数据压缩比达到85.00%的情况下,TSDS能将分类模型准确率提升3~10个百分点,同时加速模型训练,使训练SVM分类器的能耗平均降低93.76%,训练MLP分类器的能耗平均降低75.41%。可见,TSDS在大数据场景的分类任务上既能缩短训练时间和减少能耗,又能提升分类器性能,从而助力实现“双碳”目标。展开更多
针对尾矿坝在线监测重建设、轻利用的现状,基于尾矿坝位移在线监测时间序列,通过多步逆向云变换算法(Multi-step Backward Cloud Transformation Algorithm Based on Sampling with Replacement,MBCT-SR)改进云模型,根据“3E_(n)原则”...针对尾矿坝在线监测重建设、轻利用的现状,基于尾矿坝位移在线监测时间序列,通过多步逆向云变换算法(Multi-step Backward Cloud Transformation Algorithm Based on Sampling with Replacement,MBCT-SR)改进云模型,根据“3E_(n)原则”和内外包络曲线确定在线监测位移的正常运行值,从而建立尾矿坝位移分级预警阈值模型,并利用某尾矿坝全球导航卫星(Global Navigation Satellite System,GNSS)技术表面位移在线监测数据进行实例验证。结果表明:该尾矿坝水平方向位移的黄、橙、红预警阈值分别为8.41 mm/d、12.94 mm/d、19.41 mm/d,呈现出坝体中间预警阈值最大、并由中间向两侧减小的空间变化规律;尾矿坝垂直方向位移的黄、橙、红预警阈值分别为16.56 mm/d、25.48 mm/d、38.22 mm/d,且随着子坝的堆积,预警阈值逐渐增大。展开更多
目的针对分层抽样流行病调查数据的结构特点,构建两种基于分层嵌套思想的贝叶斯层次模型,并探讨其优缺点。方法以贝叶斯层次模型为基础,利用嵌套结构中的层级关系构建模型,其中,模型一以嵌套层效应分解为特点构建,模型二以嵌套层效应逐...目的针对分层抽样流行病调查数据的结构特点,构建两种基于分层嵌套思想的贝叶斯层次模型,并探讨其优缺点。方法以贝叶斯层次模型为基础,利用嵌套结构中的层级关系构建模型,其中,模型一以嵌套层效应分解为特点构建,模型二以嵌套层效应逐级传递为特点构建。以重庆市出生缺陷调查数据为例,采用Open BUGS软件进行模型拟合及分析。结果以偏差信息准则(deviance information criterion,DIC)作为拟合优度评价,模型一和模型二的DIC值分别为101.8和101.6,大致相等;敏感性分析显示,在总体率的超参数μ设置不同先验信息下,模型一和模型二对总效应估计的变异性分别为(用标准差度量,10-4):后验均数1.191和27.546;后验中位数1.038和7.617,模型一的变异性比模型二小。结论模型一和模型二均可用于嵌套结构的调查数据建模分析及预测,拟合效果相当;但模型一比模型二受先验信息影响小,稳健性更好,更适合先验信息欠缺时的数据分析。展开更多
基金supported by the National Defense Pre-research Foundation of China(51327030104)
文摘In order to meet the demand of testability analysis and evaluation for complex equipment under a small sample test in the equipment life cycle, the hierarchical hybrid testability model- ing and evaluation method (HHTME), which combines the testabi- lity structure model (TSM) with the testability Bayesian networks model (TBNM), is presented. Firstly, the testability network topo- logy of complex equipment is built by using the hierarchical hybrid testability modeling method. Secondly, the prior conditional prob- ability distribution between network nodes is determined through expert experience. Then the Bayesian method is used to update the conditional probability distribution, according to history test information, virtual simulation information and similar product in- formation. Finally, the learned hierarchical hybrid testability model (HHTM) is used to estimate the testability of equipment. Compared with the results of other modeling methods, the relative deviation of the HHTM is only 0.52%, and the evaluation result is the most accu rate.
文摘针对利用海量数据构建分类模型时训练数据规模大、训练时间长且碳排放量大的问题,提出面向低能耗高性能的分类器两阶段数据选择方法TSDS(Two-Stage Data Selection)。首先,通过修正余弦相似度确定聚类中心,并将样本数据进行基于不相似点的分裂层次聚类;其次,对聚类结果按数据分布自适应抽样以组成高质量的子样本集;最后,利用子样本集在分类模型上训练,在加速训练过程的同时提升模型精度。在Spambase、Bupa和Phoneme等6个数据集上构建支持向量机(SVM)和多层感知机(MLP)分类模型,验证TSDS的性能。实验结果表明在样本数据压缩比达到85.00%的情况下,TSDS能将分类模型准确率提升3~10个百分点,同时加速模型训练,使训练SVM分类器的能耗平均降低93.76%,训练MLP分类器的能耗平均降低75.41%。可见,TSDS在大数据场景的分类任务上既能缩短训练时间和减少能耗,又能提升分类器性能,从而助力实现“双碳”目标。
文摘目的针对分层抽样流行病调查数据的结构特点,构建两种基于分层嵌套思想的贝叶斯层次模型,并探讨其优缺点。方法以贝叶斯层次模型为基础,利用嵌套结构中的层级关系构建模型,其中,模型一以嵌套层效应分解为特点构建,模型二以嵌套层效应逐级传递为特点构建。以重庆市出生缺陷调查数据为例,采用Open BUGS软件进行模型拟合及分析。结果以偏差信息准则(deviance information criterion,DIC)作为拟合优度评价,模型一和模型二的DIC值分别为101.8和101.6,大致相等;敏感性分析显示,在总体率的超参数μ设置不同先验信息下,模型一和模型二对总效应估计的变异性分别为(用标准差度量,10-4):后验均数1.191和27.546;后验中位数1.038和7.617,模型一的变异性比模型二小。结论模型一和模型二均可用于嵌套结构的调查数据建模分析及预测,拟合效果相当;但模型一比模型二受先验信息影响小,稳健性更好,更适合先验信息欠缺时的数据分析。