期刊文献+
共找到4,250篇文章
< 1 2 213 >
每页显示 20 50 100
Reliability of multi-dimensional network systems with nodes having stochastic connection ranges
1
作者 FU Yuqiang MA Xiaoyang ZHAO Fei 《Journal of Systems Engineering and Electronics》 2025年第4期1017-1023,共7页
This paper proposes a reliability evaluation model for a multi-dimensional network system,which has potential to be applied to the internet of things or other practical networks.A multi-dimensional network system with... This paper proposes a reliability evaluation model for a multi-dimensional network system,which has potential to be applied to the internet of things or other practical networks.A multi-dimensional network system with one source element and multiple sink elements is considered first.Each element can con-nect with other elements within a stochastic connection ranges.The system is regarded as successful as long as the source ele-ment remains connected with all sink elements.An importance measure is proposed to evaluate the performance of non-source elements.Furthermore,to calculate the system reliability and the element importance measure,a multi-valued decision diagram based approach is structured and its complexity is analyzed.Finally,a numerical example about the signal transfer station system is illustrated to analyze the system reliability and the ele-ment importance measure. 展开更多
关键词 multi-dimensional network multi-valued decision diagram stochastic connection range reliability analysis impor-tance measure.
在线阅读 下载PDF
Texture features analysis on micro-structure of paste backfill based on image analysis technology 被引量:8
2
作者 YIN Sheng-hua SHAO Ya-jian +2 位作者 WU Ai-xiang WANG Yi-ming GAO Zhi-yong 《Journal of Central South University》 SCIE EI CAS CSCD 2018年第10期2360-2372,共13页
The strength of cement-based materials,such as mortar,concrete and cement paste backfill(CPB),depends on its microstructures(e.g.pore structure and arrangement of particles and skeleton).Numerous studies on the relati... The strength of cement-based materials,such as mortar,concrete and cement paste backfill(CPB),depends on its microstructures(e.g.pore structure and arrangement of particles and skeleton).Numerous studies on the relationship between strength and pore structure(e.g.,pore size and its distribution)were performed,but the micro-morphology characteristics have been rarely concerned.Texture describing the surface properties of the sample is a global feature,which is an effective way to quantify the micro-morphological properties.In statistical analysis,GLCM features and Tamura texture are the most representative methods for characterizing the texture features.The mechanical strength and section image of the backfill sample prepared from three different solid concentrations of paste were obtained by uniaxial compressive strength test and scanning electron microscope,respectively.The texture features of different SEM images were calculated based on image analysis technology,and then the correlation between these parameters and the strength was analyzed.It was proved that the method is effective in the quantitative analysis on the micro-morphology characteristics of CPB.There is a significant correlation between the texture features and the unconfined compressive strength,and the prediction of strength is feasible using texture parameters of the CPB microstructure. 展开更多
关键词 microstructure texture feature Tamura texture GLCM feature unconfined compressive strength quantitative analysis cement paste backfill
在线阅读 下载PDF
Machine learning based online fault prognostics for nonstationary industrial process via degradation feature extraction and temporal smoothness analysis 被引量:2
3
作者 HU Yun-yun ZHAO Chun-hui KE Zhi-wu 《Journal of Central South University》 SCIE EI CAS CSCD 2021年第12期3838-3855,共18页
Fault degradation prognostic, which estimates the time before a failure occurs and process breakdowns, has been recognized as a key component in maintenance strategies nowadays. Fault degradation processes are, in gen... Fault degradation prognostic, which estimates the time before a failure occurs and process breakdowns, has been recognized as a key component in maintenance strategies nowadays. Fault degradation processes are, in general,slowly varying and can be modeled by autoregressive models. However, industrial processes always show typical nonstationary nature, which may bring two challenges: how to capture fault degradation information and how to model nonstationary processes. To address the critical issues, a novel fault degradation modeling and online fault prognostic strategy is developed in this paper. First, a fault degradation-oriented slow feature analysis(FDSFA) algorithm is proposed to extract fault degradation directions along which candidate fault degradation features are extracted. The trend ability assessment is then applied to select major fault degradation features. Second, a key fault degradation factor(KFDF) is calculated to characterize the fault degradation tendency by combining major fault degradation features and their stability weighting factors. After that, a time-varying regression model with temporal smoothness regularization is established considering nonstationary characteristics. On the basis of updating strategy, an online fault prognostic model is further developed by analyzing and modeling the prediction errors. The performance of the proposed method is illustrated with a real industrial process. 展开更多
关键词 fault prognostic NONSTATIONARY industrial process fault degradation-oriented slow feature analysis(FDSFA) temporal smoothness regularization
在线阅读 下载PDF
The Formation Mechanism of Hydrogeochemical Features in a Karst System During Storm Events as Revealed by Principal Component Analysis
4
作者 Pingheng Yang Daoxian Yuan Kuang Yinglun,Wenhao Yuan,Peng Jia,Qiufang He 1.School of Geographical Sciences,Southwest University,Chongqing 400715,China. 2.Laboratory of Geochemistry and Isotope,Southwest University,Chongqing 400715,China 3.The Karst Dynamics Laboratory,Ministry of Land and Resources,Institute of Karst Geology,Chinese Academy of Geological Sciences,Guilin 541004,China 《地学前缘》 EI CAS CSCD 北大核心 2009年第S1期33-34,共2页
The hydrogeochemical parameters of Jiangjia Spring,the outlet of Qingrnuguan underground river system(QURS) in Chongqing,were found responding rapidly to storm events in late April,2008.A total of 20 kinds of hydrogeo... The hydrogeochemical parameters of Jiangjia Spring,the outlet of Qingrnuguan underground river system(QURS) in Chongqing,were found responding rapidly to storm events in late April,2008.A total of 20 kinds of hydrogeochemical parameters,including discharge,specific conductance,pH,water tempera- 展开更多
关键词 RAINFALL principal component analysis(PCA) soil EROSION AGRICULTURAL activities KARST hydrogeochemical feature Qingmuguan
在线阅读 下载PDF
Data-driven prediction of dimensionless quantities for semi-infinite target penetration by integrating machine-learning and feature selection methods 被引量:1
5
作者 Qingqing Chen Xinyu Zhang +2 位作者 Zhiyong Wang Jie Zhang Zhihua Wang 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第10期105-124,共20页
This study employs a data-driven methodology that embeds the principle of dimensional invariance into an artificial neural network to automatically identify dominant dimensionless quantities in the penetration of rod ... This study employs a data-driven methodology that embeds the principle of dimensional invariance into an artificial neural network to automatically identify dominant dimensionless quantities in the penetration of rod projectiles into semi-infinite metal targets from experimental measurements.The derived mathematical expressions of dimensionless quantities are simplified by the examination of the exponent matrix and coupling relationships between feature variables.As a physics-based dimension reduction methodology,this way reduces high-dimensional parameter spaces to descriptions involving only a few physically interpretable dimensionless quantities in penetrating cases.Then the relative importance of various dimensionless feature variables on the penetration efficiencies for four impacting conditions is evaluated through feature selection engineering.The results indicate that the selected critical dimensionless feature variables by this synergistic method,without referring to the complex theoretical equations and aiding in the detailed knowledge of penetration mechanics,are in accordance with those reported in the reference.Lastly,the determined dimensionless quantities can be efficiently applied to conduct semi-empirical analysis for the specific penetrating case,and the reliability of regression functions is validated. 展开更多
关键词 Data-driven dimensional analysis PENETRATION Semi-infinite metal target Dimensionless numbers feature selection
在线阅读 下载PDF
Feature evaluation and extraction based on neural network in analog circuit fault diagnosis 被引量:16
6
作者 Yuan Haiying Chen Guangju Xie Yongle 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2007年第2期434-437,共4页
Choosing the right characteristic parameter is the key to fault diagnosis in analog circuit. The feature evaluation and extraction methods based on neural network are presented. Parameter evaluation of circuit feature... Choosing the right characteristic parameter is the key to fault diagnosis in analog circuit. The feature evaluation and extraction methods based on neural network are presented. Parameter evaluation of circuit features is realized by training results from neural network; the superior nonlinear mapping capability is competent for extracting fault features which are normalized and compressed subsequently. The complex classification problem on fault pattern recognition in analog circuit is transferred into feature processing stage by feature extraction based on neural network effectively, which improves the diagnosis efficiency. A fault diagnosis illustration validated this method. 展开更多
关键词 Fault diagnosis feature extraction Analog circuit Neural network Principal component analysis.
在线阅读 下载PDF
Adaptive WNN aerodynamic modeling based on subset KPCA feature extraction 被引量:5
7
作者 孟月波 邹建华 +1 位作者 甘旭升 刘光辉 《Journal of Central South University》 SCIE EI CAS 2013年第4期931-941,共11页
In order to accurately describe the dynamic characteristics of flight vehicles through aerodynamic modeling, an adaptive wavelet neural network (AWNN) aerodynamic modeling method is proposed, based on subset kernel pr... In order to accurately describe the dynamic characteristics of flight vehicles through aerodynamic modeling, an adaptive wavelet neural network (AWNN) aerodynamic modeling method is proposed, based on subset kernel principal components analysis (SKPCA) feature extraction. Firstly, by fuzzy C-means clustering, some samples are selected from the training sample set to constitute a sample subset. Then, the obtained samples subset is used to execute SKPCA for extracting basic features of the training samples. Finally, using the extracted basic features, the AWNN aerodynamic model is established. The experimental results show that, in 50 times repetitive modeling, the modeling ability of the method proposed is better than that of other six methods. It only needs about half the modeling time of KPCA-AWNN under a close prediction accuracy, and can easily determine the model parameters. This enables it to be effective and feasible to construct the aerodynamic modeling for flight vehicles. 展开更多
关键词 WAVELET neural network fuzzy C-means clustering kernel principal components analysis feature extraction aerodynamic modeling
在线阅读 下载PDF
Cobalt crust recognition based on kernel Fisher discriminant analysis and genetic algorithm in reverberation environment 被引量:2
8
作者 ZHAO Hai-ming ZHAO Xiang +1 位作者 HAN Feng-lin WANG Yan-li 《Journal of Central South University》 SCIE EI CAS CSCD 2021年第1期179-193,共15页
Recognition of substrates in cobalt crust mining areas can improve mining efficiency.Aiming at the problem of unsatisfactory performance of using single feature to recognize the seabed material of the cobalt crust min... Recognition of substrates in cobalt crust mining areas can improve mining efficiency.Aiming at the problem of unsatisfactory performance of using single feature to recognize the seabed material of the cobalt crust mining area,a method based on multiple-feature sets is proposed.Features of the target echoes are extracted by linear prediction method and wavelet analysis methods,and the linear prediction coefficient and linear prediction cepstrum coefficient are also extracted.Meanwhile,the characteristic matrices of modulus maxima,sub-band energy and multi-resolution singular spectrum entropy are obtained,respectively.The resulting features are subsequently compressed by kernel Fisher discriminant analysis(KFDA),the output features are selected using genetic algorithm(GA)to obtain optimal feature subsets,and recognition results of classifier are chosen as genetic fitness function.The advantages of this method are that it can describe the signal features more comprehensively and select the favorable features and remove the redundant features to the greatest extent.The experimental results show the better performance of the proposed method in comparison with only using KFDA or GA. 展开更多
关键词 feature extraction kernel Fisher discriminant analysis(KFDA) genetic algorithm multiple feature sets cobalt crust recognition
在线阅读 下载PDF
Multi-dimensional blind separation method for STBC systems 被引量:3
9
作者 Minggang Luo Liping Li +1 位作者 Guobing Qian Huaguo Zhang 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2013年第6期912-918,共7页
Intercepted signal blind separation is a research topic with high importance for both military and civilian communication systems. A blind separation method for space-time block code (STBC) systems is proposed by us... Intercepted signal blind separation is a research topic with high importance for both military and civilian communication systems. A blind separation method for space-time block code (STBC) systems is proposed by using the ordinary independent component analysis (ICA). This method cannot work when specific complex modulations are employed since the assumption of mutual independence cannot be satisfied. The analysis shows that source signals, which are group-wise independent and use multi-dimensional ICA (MICA) instead of ordinary ICA, can be applied in this case. Utilizing the block-diagonal structure of the cumulant matrices, the JADE algorithm is generalized to the multidimensional case to separate the received data into mutually independent groups. Compared with ordinary ICA algorithms, the proposed method does not introduce additional ambiguities. Simulations show that the proposed method overcomes the drawback and achieves a better performance without utilizing coding information than channel estimation based algorithms. 展开更多
关键词 multiple input multiple output (MIMO) space-time block code (STBC) multi-dimensional independent component analysis (MICA) blind separation
在线阅读 下载PDF
Support vector classifier based on principal component analysis 被引量:1
10
作者 Zheng Chunhong Jiao Licheng Li Yongzhao 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2008年第1期184-190,共7页
Support vector classifier (SVC) has the superior advantages for small sample learning problems with high dimensions, with especially better generalization ability. However there is some redundancy among the high dim... Support vector classifier (SVC) has the superior advantages for small sample learning problems with high dimensions, with especially better generalization ability. However there is some redundancy among the high dimensions of the original samples and the main features of the samples may be picked up first to improve the performance of SVC. A principal component analysis (PCA) is employed to reduce the feature dimensions of the original samples and the pre-selected main features efficiently, and an SVC is constructed in the selected feature space to improve the learning speed and identification rate of SVC. Furthermore, a heuristic genetic algorithm-based automatic model selection is proposed to determine the hyperparameters of SVC to evaluate the performance of the learning machines. Experiments performed on the Heart and Adult benchmark data sets demonstrate that the proposed PCA-based SVC not only reduces the test time drastically, but also improves the identify rates effectively. 展开更多
关键词 support vector classifier principal component analysis feature selection genetic algorithms
在线阅读 下载PDF
Remote Sensing Estimation of Crop Lead Pollution Stress Degree Using Wavelet Analysis
11
作者 Meihong Fang School of Information Engineering,China University of Geoseiences(Beijing),Beijing 100083,China. 《地学前缘》 EI CAS CSCD 北大核心 2009年第S1期243-243,共1页
Accurate estimation of soil lead pollution degree is one of the key steps in controlling soil lead pollution; vegetable hyperspectral features research provided a new approach to discovering and monitoring soil heavy ... Accurate estimation of soil lead pollution degree is one of the key steps in controlling soil lead pollution; vegetable hyperspectral features research provided a new approach to discovering and monitoring soil heavy metal pollution.Spectral reflectance implies information of pollution impacts on vegetation;estimation of lead pollution degree based on the spectral reflectance is equivalent to extraction of weak information.This study puts forward a new feature extraction method based 展开更多
关键词 HYPERSPECTRAL remote sensing WAVELET analysis lead POLLUTION WEAK information feature extraction
在线阅读 下载PDF
Direction navigability analysis of geomagnetic field based on Gabor filter
12
作者 XIAO Jing DUAN Xiusheng +1 位作者 QI Xiaohui WANG Jianchen 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2018年第2期378-385,共8页
Direction navigability analysis is a supplement to the navigability analysis theory, in which extraction of the direction suitable-matching features(DSMFs) determines the evaluation performance. A method based on the ... Direction navigability analysis is a supplement to the navigability analysis theory, in which extraction of the direction suitable-matching features(DSMFs) determines the evaluation performance. A method based on the Gabor filter is proposed to estimate the direction navigability of the geomagnetic field. First,the DSMFs are extracted based on the Gabor filter’s responses.Second, in the view of pattern recognition, the classification accuracy in fault diagnosis is introduced as the objective function of the hybrid particle swarm optimization(HPSO) algorithm to optimize the Gabor filter’s parameters. With its guidance, the DSMFs are extracted. Finally, a direction navigability analysis model is established with the support vector machine(SVM), and the performances of the models under different objective functions are discussed. Simulation results show the parameters of the Gabor filter have a significant influence on the DSMFs, which, in turn, affects the analysis results of direction navigability. Moreover, the risk of misclassification can be effectively reduced by using the analysis model with optimal Gabor filter parameters. The proposed method is not restricted in geomagnetic navigation, and it also can be used in other fields such as terrain matching and gravity navigation. 展开更多
关键词 geomagnetic navigation navigability analysis direction navigability Gabor filter direction suitable-matching feature
在线阅读 下载PDF
基于特征工程优化和SHAP解释方法预测圆钢管约束混凝土短柱轴压承载力 被引量:1
13
作者 韦建刚 吴洵桢 +1 位作者 郑裔 杨艳 《东南大学学报(自然科学版)》 北大核心 2025年第5期1328-1336,共9页
以钢管约束混凝土(STCC)短柱为研究背景,聚焦于数据和特征的选择与前处理、模型的可视化应用以及特征重要性分析,探究机器学习“黑匣子”背后的预测过程。以154根圆STCC短柱为例,进行学习并预测其极限承载力N_(u)。讨论了STCC短柱结构... 以钢管约束混凝土(STCC)短柱为研究背景,聚焦于数据和特征的选择与前处理、模型的可视化应用以及特征重要性分析,探究机器学习“黑匣子”背后的预测过程。以154根圆STCC短柱为例,进行学习并预测其极限承载力N_(u)。讨论了STCC短柱结构中常见的9个特征的相关性以及冗余性,从13个机器学习模型中筛选出梯度提升树(GBDT)、随机森林(Random Forest)、极端梯度提升(XGBoost)和极端随机树(Extra Trees)四个最优模型对STCC的极限轴压承载力N_(u)进行预测,并采用SHAP可解释方法对4种模型进行可视化对比分析。研究表明:截面含钢率α在统计分析中方差趋于零且与径厚比B/t呈完全负相关关系;约束效应系数ζ在F检验中与N_(u)的显著性水平小于5%,斯皮尔曼、皮尔森以及互信息量相关性分析均表明其与N_(u)弱相关。通过SHAP方法对上述4种模型可视化发现,XGBoost在测试集上的表现尤为突出,其决定系数R^(2)(0.9626)、均方根误差(287.40 kN)、平均绝对误差(139.13 kN)以及平均绝对百分比误差(5.1%)均为4个模型中的最低值。此外,XGBoost在泛化能力和避免过拟合方面也表现出色,因此更适用于STCC短柱轴压承载力预测。 展开更多
关键词 机器学习 特征工程 SHAP解释方法 圆钢管约束混凝土 轴压承载力 特征重要性分析
在线阅读 下载PDF
融合持续同调-CNN的灰度化光伏红外图像的识别和分类 被引量:2
14
作者 孙海蓉 唐振超 +1 位作者 张洪玮 周黎辉 《太阳能学报》 北大核心 2025年第6期321-328,共8页
针对卷积神经网络对光伏红外热斑图像进行识别和分类准确率低、计算量大、光伏红外图像上热斑特征难以识别的问题,提出一种基于持续同调的对灰度化光伏热斑图像提取拓扑特征的算法。首先,将光伏红外热斑图像灰度化;然后将灰度化之后的... 针对卷积神经网络对光伏红外热斑图像进行识别和分类准确率低、计算量大、光伏红外图像上热斑特征难以识别的问题,提出一种基于持续同调的对灰度化光伏热斑图像提取拓扑特征的算法。首先,将光伏红外热斑图像灰度化;然后将灰度化之后的图像进行持续同调计算,得到条形码,从条形码中提取其拓扑特征组成新的图像;最后,用卷积神经网络对新的图像进行识别和分类。实验结果表明,灰度化后的光伏红外图像是一个单通道图像,计算量更小;提取的光伏红外热斑图像拓扑特征更易识别和分类,准确率更高。 展开更多
关键词 特征提取 卷积神经网络 持续同调 拓扑数据分析 拓扑特征 识别和分类
在线阅读 下载PDF
基于多模态信息融合的中文隐式情感分析 被引量:4
15
作者 张换香 李梦云 张景 《计算机工程与应用》 北大核心 2025年第2期179-190,共12页
隐式情感表达中缺乏显式情感词,给隐式情感分析带来一定的挑战。为有效解决此问题,借助外部信息是有效解决隐式情感分析的方法之一。与现有的主要借助单一文本信息的研究不同,提出一种融合多模态信息(包括语音和视频)的隐式情感分析方... 隐式情感表达中缺乏显式情感词,给隐式情感分析带来一定的挑战。为有效解决此问题,借助外部信息是有效解决隐式情感分析的方法之一。与现有的主要借助单一文本信息的研究不同,提出一种融合多模态信息(包括语音和视频)的隐式情感分析方法。通过从语音中提取音调、强度等声学特征,以及从视频中捕捉面部表情等视觉特征,辅助理解隐式情感。利用BiLSTM网络挖掘各单模态内部的上下文信息;结合多头互注意力机制分别捕捉与文本相关的语音和视觉特征,并通过迭代优化,减少非文本模态的低阶冗余信息。此外,通过设计以文本为中心的交叉注意融合模块,强化隐式文本特征表示,并处理模态间的异质性,增强隐式情感分析的综合性能。在CMUMOSI、CMU-MOSEI、MUMETA数据集上的实验结果表明,所提出的模型优于其他基线模型。这种针对隐式情感分析的多模态处理策略,充分利用语音和视觉外部知识,更全面、准确地捕捉隐式情感表达,有效提升了隐式情感分析的准确率。 展开更多
关键词 隐式情感分析 深度神经网络 多模态 注意力机制 特征融合
在线阅读 下载PDF
辽宁省大连市60岁及以上人群跌倒伤害流行特征分析
16
作者 周毅恒 张瑜 姜杰 《中国健康教育》 北大核心 2025年第6期548-552,共5页
目的 研究辽宁省大连市60岁及以上人群跌倒伤害流行病学特征,为开展干预措施提供依据。方法 描述性分析2018—2022年在大连市伤害监测哨点医院门、急诊首次就诊,且被诊断为跌倒伤害的60岁及以上人群流行特征,采用描述性流行病学方法分... 目的 研究辽宁省大连市60岁及以上人群跌倒伤害流行病学特征,为开展干预措施提供依据。方法 描述性分析2018—2022年在大连市伤害监测哨点医院门、急诊首次就诊,且被诊断为跌倒伤害的60岁及以上人群流行特征,采用描述性流行病学方法分析其特征,计算构成比并采用χ^(2)检验进行组间比较。结果 2018—2022年大连市共收集60岁及以上人群跌倒伤18 596例,占总伤害病例的52.65%;年度跌倒伤病例的占总伤害病例的比例逐年上升。男性病例7264例,女性11 332例,男女性别比为1:1.56。60~<65岁人群跌倒伤占比最高(28.88%),其次为65~<70岁(23.61%)和70~<75岁(15.26%)人群。跌倒伤害发生家中和公路/街道占比最多,分别为36.67%和30.07%。伤害性质主要为挫伤(43.50%)和骨折(33.34%),其中85岁及以上人群骨折占比(43.23%)最高,且占比与年龄的增长正相关(r=0.99,P<0.05)。受伤部位集中在下肢、头部和躯干,占比分别为29.64%、22.88%和22.47%。临床严重程度主要为轻度(58.68%)和中度(39.59%)。结论跌倒伤害是大连市60岁及以上人群首要伤害原因,且占总伤害病例的比例逐年上升,女性和85岁以上人群是重点人群,应根据不同性别和年龄组人群跌倒特征开展防控措施。 展开更多
关键词 60岁及以上人群 跌倒 特征 分析
在线阅读 下载PDF
面向超级计算系统的节点故障异常预测方法
17
作者 赵一宁 王小宁 +2 位作者 牛铁 赵毅 肖海力 《计算机科学》 北大核心 2025年第9期128-136,共9页
随着超级计算系统的规模不断扩大,其计算节点发生故障和异常的概率也随之上升,严重影响了计算系统的运行稳定性。传统的故障应对方法多采用事后响应和补救措施,只能一定程度地挽回损失,而对故障和异常进行事前预测则能够提供更多的反应... 随着超级计算系统的规模不断扩大,其计算节点发生故障和异常的概率也随之上升,严重影响了计算系统的运行稳定性。传统的故障应对方法多采用事后响应和补救措施,只能一定程度地挽回损失,而对故障和异常进行事前预测则能够提供更多的反应和处理时间,因此逐渐成为故障响应方法的研究热点之一。对此,提出了一种面向超级计算系统的节点故障异常预测方法,旨在提升系统运行稳定性,减少计算资源的浪费。该方法首先分析系统历史运行数据,并通过无监督结合少量人工辅助的方法标记异常,基于这些异常在原始运行数据中发现关联的前置运行特征,随后基于机器学习方法建立节点故障异常的预测模型。该预测方法通过在原数据集上交叉验证获得了78%的精度和约90%的召回率,同时也保证了充分的提前时间。验证中使用的数据集是来自真实的超级计算系统的原始运行数据,证明了该方法具有可应用性。 展开更多
关键词 数据分析 异常预测 运行特征 预测模型
在线阅读 下载PDF
基于特征选择的食品掺杂物可视分析系统
18
作者 汤颖 盛祎琛 +1 位作者 潘晶 周伟华 《计算机辅助设计与图形学学报》 北大核心 2025年第2期229-242,共14页
食品安全抽检数据中蕴含的掺杂物信息在食品安全早期预警、风险预测等方面有着重要应用.为深入研究食品类别中的高权重掺杂物,首先根据对比学习思想设计了基于特征选择技术的食品掺杂物特征权重计算模型,并获取模型中的样本分类结果、... 食品安全抽检数据中蕴含的掺杂物信息在食品安全早期预警、风险预测等方面有着重要应用.为深入研究食品类别中的高权重掺杂物,首先根据对比学习思想设计了基于特征选择技术的食品掺杂物特征权重计算模型,并获取模型中的样本分类结果、特征信息以及分类模型中常见的评估指标,在上述特征模型计算的基础上,设计并实现了一个食品掺杂物可视分析系统.该系统不仅包含多个联动视图帮助用户更直观地理解食品掺杂物的特征,并支持用户通过迭代交互不断更新最优特征组合.最后,将该可视分析系统用于2010—2020年全国范围内24种食品类别的89202条不合格样本的掺杂物特征分析,实验结果证明该系统可以通过自动化的方式更加方便、直接地获取食品的掺杂物权重,增强掺杂物特征组合,为专业人员提供了对食品掺杂物更全面的见解. 展开更多
关键词 特征选择 食品抽检数据 掺杂物 可视分析 关联分析
在线阅读 下载PDF
山东地区大地电场优势方位角特征分析
19
作者 董晓娜 管贻亮 +3 位作者 王庆林 唐廷梅 张继红 缪杰 《大地测量与地球动力学》 北大核心 2025年第10期1071-1078,共8页
使用山东地区7个地电场台站2021年以来的观测数据,基于大地电场岩体裂隙模型计算大地电场优势方位角α,其跳动范围Δα均未出现异常判定标准中的情况,不满足异常指标。根据本文方法的预测规则,分析认为山东地区近期发生中强地震的概率... 使用山东地区7个地电场台站2021年以来的观测数据,基于大地电场岩体裂隙模型计算大地电场优势方位角α,其跳动范围Δα均未出现异常判定标准中的情况,不满足异常指标。根据本文方法的预测规则,分析认为山东地区近期发生中强地震的概率较小。结合优势方位角特征反映出的场地岩体裂隙发育情况进行进一步分析,结果表明,位于聊考断裂带东侧的菏泽台和位于苍山-尼山断裂带与凫山断裂带之间的邹城台岩体裂隙处于生成阶段,符合孕育中小地震的背景;位于沂沭断裂带北段的安丘台和陵阳台及位于牟平-即墨断裂带东侧的乳山台岩体裂隙处于发育好或长大阶段,符合孕育中强地震的背景,值得重点关注。 展开更多
关键词 地电场 优势方位角 特征分析 山东地区 地震
在线阅读 下载PDF
多通道句法门控图神经网络用于句子级情感分析 被引量:1
20
作者 张吴波 邹旺 +2 位作者 熊黎 戴顺鄂 吴文欢 《计算机工程与应用》 北大核心 2025年第8期135-144,共10页
情感分析技术是自然语言处理领域的一项重要任务。然而,现阶段文档级图神经网络的图构建复杂且需要占用大量的内存资源。在线评论文本一般由短句组成,文档级图神经网络进行情感分析的效率较低。此外,现有工作中句子级图神经网络未能充... 情感分析技术是自然语言处理领域的一项重要任务。然而,现阶段文档级图神经网络的图构建复杂且需要占用大量的内存资源。在线评论文本一般由短句组成,文档级图神经网络进行情感分析的效率较低。此外,现有工作中句子级图神经网络未能充分结合文本的单词特征、依存特征和词性特征。针对以上问题,提出一种多通道句法门控图神经网络的句子级情感分析方法(MSGNN)。该模型以句子的依存句法关系图为骨架,词性特征、单词特征和依存特征作为节点特征信息;利用三通道的门控图神经网络分别学习三种特征;采用图卷积神经网络聚合节点的特征信息。在SST-1、SST-2、MR三种基准数据集上的实验结果表明该模型相比基线模型的性能有所提升。 展开更多
关键词 情感分析 句子级图神经网络 依存特征 门控图神经网络
在线阅读 下载PDF
上一页 1 2 213 下一页 到第
使用帮助 返回顶部