期刊文献+
共找到119篇文章
< 1 2 6 >
每页显示 20 50 100
融合DT-BO-GRU的中长期光伏功率滚动预测模型
1
作者 李超 涂腾 +3 位作者 彭勋辉 李振 晁梓博 刘淑玉 《太阳能学报》 北大核心 2025年第5期275-284,共10页
提出一种基于决策树提取的贝叶斯优化GRU中长期光伏发电功率滚动预测模型。首先借助决策树模型对光伏组件模型进行参数提取,重新组成特征数据集;其次引入贝叶斯优化算法构建新的GRU神经网络模型;最后对树模型提取的光伏参数进行光伏功... 提出一种基于决策树提取的贝叶斯优化GRU中长期光伏发电功率滚动预测模型。首先借助决策树模型对光伏组件模型进行参数提取,重新组成特征数据集;其次引入贝叶斯优化算法构建新的GRU神经网络模型;最后对树模型提取的光伏参数进行光伏功率预测。实验结果表明,所提出的混合模型在极端地区等特殊场景下具有高精度的预测效果,且实验仿真结果拟合曲线更接近真实值,模型整体评价指标误差较低。因此,该文提出的融合DT-BO-GRU模型具有更高预测精度,为在北方地区对光伏发电功率预测提供了可能。 展开更多
关键词 光伏组件 神经网络 贝叶斯算法 决策树模型 参数提取 功率预测
在线阅读 下载PDF
群智能算法优化改进随机森林算法的井漏预测
2
作者 白凯 戴升升 +1 位作者 张照硕 金思怡 《现代电子技术》 北大核心 2025年第14期159-168,共10页
井漏预测一直是钻井中堵漏防治研究的热点和难点课题,传统方法依赖专家经验,技术可复制性差,在特征参数选择上缺乏与井漏的相关性分析,导致预测精度低,且模型存在一定的局限性。为此,提出一种基于M5模型树的改进随机森林(IRF)算法,并采... 井漏预测一直是钻井中堵漏防治研究的热点和难点课题,传统方法依赖专家经验,技术可复制性差,在特征参数选择上缺乏与井漏的相关性分析,导致预测精度低,且模型存在一定的局限性。为此,提出一种基于M5模型树的改进随机森林(IRF)算法,并采用基于Sobol序列的初始化策略,引入自适应螺旋变化策略更新发现者位置,同时利用Lévy飞行策略来更新跟随者位置的改进麻雀搜索算法(ISSA)对IRF参数进行优化,进而建立一种ISSA-IRF井漏预测模型。该模型整合了来自地质、钻井泥浆和钻井作业相关的18个参数,利用Pearson相关性分析、递归特征消除和梯度提升树确定了11个关键参数。实验结果表明,与原模型相比,ISSA-IRF模型在井漏预测上的准确率提升了7.7%,且模型的性能显著优于经典的井漏预测模型(如LSTM、BP和SVM等)。改进后的模型可用于现场堵漏控制,为防漏堵漏作业提供科学指导。 展开更多
关键词 井漏预测 随机森林算法 M5模型树 Sobol序列 自适应螺旋变化 Lévy飞行策略 麻雀搜索算法
在线阅读 下载PDF
机器学习算法在ICU患者压力性损伤风险预警中的应用进展
3
作者 冀慧敏 柏亚妹 +3 位作者 宋玉磊 张薛晴 徐桂华 王晓凤 《护理学杂志》 北大核心 2025年第5期126-128,F0003,共4页
综述机器学习算法在ICU压力性损伤风险预警中的应用,预测模型包括逻辑回归模型、基于树的模型、决策树模型、贝叶斯算法、循环神经网络及集成模型,旨在为制订个性化的预防策略提供科学方法,以提升ICU护理水平。
关键词 ICU 压力性损伤 机器学习算法 模式识别 预测分析 逻辑回归 基于树的模型 风险预警
在线阅读 下载PDF
基于机器学习的冠心病风险预测模型构建与比较 被引量:2
4
作者 岳海涛 何婵婵 +3 位作者 成羽攸 张森诚 吴悠 马晶 《中国全科医学》 CAS 北大核心 2025年第4期499-509,共11页
背景冠状动脉粥样硬化性心脏病(以下简称冠心病)是全球重要的死亡原因之一。目前关于冠心病风险评估的研究在逐年增长。然而,在这些研究中常忽略了数据不平衡的问题,而解决该问题对于提高分类算法中识别冠心病风险的准确性至关重要。目... 背景冠状动脉粥样硬化性心脏病(以下简称冠心病)是全球重要的死亡原因之一。目前关于冠心病风险评估的研究在逐年增长。然而,在这些研究中常忽略了数据不平衡的问题,而解决该问题对于提高分类算法中识别冠心病风险的准确性至关重要。目的探索冠心病的影响因素,通过使用2种平衡数据的方法,基于5种算法建立冠心病风险相关的预测模型,比较这5种模型对冠心病风险的预测价值。方法基于2021年美国国家行为风险因素监测系统(BRFSS)横断面调查数据筛选出112606名研究对象的健康相关风险行为、慢性健康状况等24个变量信息,结局指标为自我报告是否患有冠心病并据此分为冠心病组和非冠心病组。通过进行单因素分析和逐步Logistic回归分析探索冠心病发生的影响因素并筛选出纳入预测模型的变量。随机抽取112606名受访者的10%(共计11261名),以8∶2的比例随机划分为训练与测试的数据集,采用随机过采样和合成少数过采样技术(SMOTE)两种过采样的方法处理不平衡数据,基于k最邻近算法(KNN)、Logistic回归、支持向量机(SVM)、决策树和XGBoost算法分别建立冠心病预测模型。结果两组年龄、性别、BMI、种族、婚姻状态、教育水平、收入水平、家里有几个孩子、是否被告知患高血压、是否被告知处于高血压前期、是否被告知患妊娠高血压、现在是否在服用高血压药物、是否被告知患有高脂血症、是否被告知患有糖尿病、吸烟情况、过去30 d内是否至少喝过1次酒、是否为重度饮酒者、是否为酗酒者、过去30 d内是否有体育锻炼、心理健康状况以及自我健康评价比较,差异有统计学意义(P<0.05)。逐步Logistic回归分析结果显示:年龄、性别、BMI、种族、教育水平、收入水平、是否被告知患高血压、是否被告知处于高血压前期、是否被告知患妊娠高血压、现在是否在服用高血压药物、是否被告知患有高脂血症、是否被告知患有糖尿病、吸烟情况、过去30 d内是否至少喝过1次酒、是否为重度饮酒者、是否为酗酒者以及自我健康评价为冠心病的影响因素(P<0.05)。风险模型构建的分析结果显示:k最邻近算法、Logistic回归、支持向量机、决策树和XGBoost采用SMOTE处理不平衡数据的总体分类精度分别为59.2%、67.4%、66.2%、69.2%和85.9%,召回率分别为75.2%、71.4%、70.5%、62.9%和34.8%,精确度分别为15.4%、18.2%、17.5%、17.6%和28.7%,F值分别为0.256、0.290、0.280、0.275和0.315,受试者工作特征曲线下面积分别为0.80、0.78、0.72、0.72和0.82;采用随机过采样处理不平衡数据的总体分类精度分别为62.5%、68.5%、69.0%、60.2%和70.1%,召回率分别为70.0%、69.5%、71.9%、69.0%和67.6%;精确度分别为15.8%、18.4%、19.1%、14.8%和19.0%,F值分别为0.258、0.291、0.302、0.244和0.297,受试者工作特征曲线下面积分别为0.80、0.77、0.72、0.72和0.83。结论本研究不仅确认了已知冠心病的影响因素,还发现了自我健康评价水平、收入水平和教育水平对冠心病具有潜在影响。在使用2种数据平衡方法后,5种算法的性能显著提高。其中XGBoost模型表现最佳,可作为未来优化冠心病预测模型的参考。此外,鉴于XGBoost模型的优异性能以及逐步Logistic回归的操作便捷和可解释性,推荐在冠心病风险预测模型中结合使用数据平衡后的XGBoost和逐步Logistic回归分析。 展开更多
关键词 冠心病 机器学习 风险预测模型 LOGISTIC回归 k最邻近算法 支持向量机 决策树 XGBoost
在线阅读 下载PDF
基于机器学习的糖尿病足发病风险预测模型构建
5
作者 楼佳烨 王艳梅 +2 位作者 潘欣欣 张志英 王红岩 《护理学杂志》 北大核心 2025年第9期26-30,共5页
目的采用5种机器学习算法构建2型糖尿病患者糖尿病足发病风险预测模型,筛选最优预测模型,为早期精准识别糖尿病足高危人群提供依据。方法通过文献回顾和专家咨询拟定糖尿病足发病风险因素调查表。2018年3月至2021年10月选取住院且接受... 目的采用5种机器学习算法构建2型糖尿病患者糖尿病足发病风险预测模型,筛选最优预测模型,为早期精准识别糖尿病足高危人群提供依据。方法通过文献回顾和专家咨询拟定糖尿病足发病风险因素调查表。2018年3月至2021年10月选取住院且接受随访管理的984例2型糖尿病患者作为研究对象,收集患者资料,采用Lasso回归法筛选预测变量,按8∶2的比例随机划分训练集787例和验证集197例。训练集采用logistic回归、决策树、支持向量机、随机森林和极端梯度提升构建模型,验证集进行内部验证,评估模型的预测性能。综合评估ROC曲线下面积和F1分数确定最优模型。基于最优模型构建并验证2型糖尿病患者糖尿病足发病风险评分表。结果有217例(22.05%)2型糖尿病患者发生糖尿病足。Lasso回归筛选出8个预测变量,包括年龄、总胆固醇、吸烟、针刺痛觉、足部皮肤湿冷、足部畸形、趾甲畸形和鞋袜不适。结果显示随机森林ROC曲线下面积为0.787,准确率为0.838,精确率为0.591,灵敏度为0.361,特异度为0.944,F1分数为0.448,较其他模型有较好的预测性能。基于随机森林模型构建的2型糖尿病患者糖尿病足发病风险评分表得分为0~101分,最佳截断值为43分,ROC曲线下面积为0.745。结论基于随机森林算法构建的模型整体预测性能最优,基于此模型构建的2型糖尿病患者糖尿病足发病风险评分表能够用于糖尿病足高风险人群的早期筛查。 展开更多
关键词 2型糖尿病 糖尿病足 风险因素 预测模型 机器学习 决策树 随机森林算法 护理
在线阅读 下载PDF
创伤病人术后多重耐药菌医院感染风险模型的构建 被引量:2
6
作者 郭磊磊 秦红英 +2 位作者 武珍珍 张艺 赵智琛 《护理研究》 北大核心 2025年第3期361-367,共7页
目的:应用Lasso-Logistic回归分析和分类树(CHAID)算法分析创伤病人术后多重耐药菌(MDRO)医院感染的危险因素,构建风险预测模型并比较结果的优劣性。方法:回顾性分析2019年1月—2022年1月郑州大学附属郑州中心医院创伤住院病人的临床资... 目的:应用Lasso-Logistic回归分析和分类树(CHAID)算法分析创伤病人术后多重耐药菌(MDRO)医院感染的危险因素,构建风险预测模型并比较结果的优劣性。方法:回顾性分析2019年1月—2022年1月郑州大学附属郑州中心医院创伤住院病人的临床资料,应用CHAID算法和Lasso-Logistic回归分别建立风险预测模型,采用拟合优度检验评价模型效果,使用受试者工作特征(ROC)曲线下面积(AUC)比较两种预测模型的优劣。结果:共纳入821例创伤病人,其中创伤合并多重耐药菌感染191例,感染率为23.26%,分类树模型和Logistic回归结果均显示,急性生理学及慢性健康状况评分系统(APACHEⅡ)评分≥20分、发热时间≥3 d、住院时间≥10 d、入院时降钙素原(PCT)≥0.5 ng/L是创伤病人术后多重耐药菌感染的独立危险因素。分类树模型的风险预测正确率为79.2%,模型拟合效果较好;Lasso-Logistic回归模型Hosmer-Lemeshow拟合优度检验显示模型拟合较好(P=0.146),Bootstrap内部验证模型预测能力较好。分类树模型的AUC为0.792[95%CI(0.763,0.819)],Lasso-Logistic回归模型的AUC为0.862[95%CI(0.836,0.885)],两种模型的预测价值中等,通过比较两种模型预测价值差异有统计学意义(P<0.001)。净重分类指数(net reclassification index,NRI)评价提示Lasso-Logistic回归模型优于分类树模型(NRI=0.1536)。结论:Lasso-Logistic回归分析与分类树模型均能提供较为直观的呈现形式,两种模型互补结合使用可以从不同角度早期识别创伤病人术后多重耐药菌感染的风险因素,应采取有效防控措施降低多重耐药菌医院感染发生率。 展开更多
关键词 创伤 多重耐药菌 医院感染 危险因素 Lasso-Logistic回归 分类树 预测模型 调查研究
在线阅读 下载PDF
肺癌病人治疗期输液港医用粘胶相关皮肤损伤风险预测模型的构建
7
作者 吴珊珊 刘扣英 汤婷 《护理研究》 北大核心 2025年第15期2525-2534,共10页
目的:分析肺癌病人治疗期输液港发生医用粘胶相关皮肤损伤(medical adhesive related skin injury,MARSI)的危险因素,并建立风险预测模型,以期为临床护理干预提供参考。方法:回顾性收集2023年1月—2024年4月在某三级甲等综合医院呼吸与... 目的:分析肺癌病人治疗期输液港发生医用粘胶相关皮肤损伤(medical adhesive related skin injury,MARSI)的危险因素,并建立风险预测模型,以期为临床护理干预提供参考。方法:回顾性收集2023年1月—2024年4月在某三级甲等综合医院呼吸与危重症医学科使用胸壁输液港的650例病人为调查对象,运用Logistic回归模型、决策树分类回归树(CART)模型和随机森林模型分别建立肺癌病人治疗期输液港医用粘胶相关皮肤损伤风险预测模型,通过比较3种模型的准确率、灵敏度、特异度、阳性预测值、阴性预测值、Kappa系数和受试者工作特征(ROC)曲线下面积(AUC)评价其性能。结果:Logistic回归模型、决策树CART模型和随机森林模型的准确率分别为84%、86%、86%,特异度为97%、98%、97%,灵敏度为54%、59%、61%,阳性预测值为54%、59%、61%,阴性预测值为97%、98%、97%,Kappa值为0.57,0.63,0.64,AUC为0.83,0.87,0.86。Logistic回归模型、决策树CART模型、随机森林的AUC比较差异均有统计学意义(P<0.05)。皮肤毒性为3种模型的共同预测因子。结论:决策树CART模型和随机森林模型相比Logistic回归模型在构建肺癌病人治疗期输液港医用粘胶相关皮肤损伤风险预测模型中具有更好的性能,可为临床护士预测肺癌病人输液港医用粘胶相关皮肤损伤发生风险提供参考。 展开更多
关键词 输液港 医用粘胶相关皮肤损伤 预测模型 LOGISTIC回归 决策树分类回归树 随机森林法
在线阅读 下载PDF
融合XGBoost和逻辑回归算法的电信客户流失预测模型
8
作者 吕宁 罗倩 《现代电子技术》 北大核心 2025年第11期136-143,共8页
为应对大规模、高维度且分布不均衡的企业数据环境下客户流失预测难题,文中提出一种融合极端梯度提升树与逻辑回归(XG-LR)的集成学习算法。该方法利用XGBoost算法构建决策树集成,将样本在树结构中的叶节点映射为新特征并输入LR模型,实... 为应对大规模、高维度且分布不均衡的企业数据环境下客户流失预测难题,文中提出一种融合极端梯度提升树与逻辑回归(XG-LR)的集成学习算法。该方法利用XGBoost算法构建决策树集成,将样本在树结构中的叶节点映射为新特征并输入LR模型,实现树模型非线性特征提取能力与LR模型解释性优势的有效结合。实验结果表明,在Teclo电信流失数据集上,XG-LR算法的预测精确率达到94.55%,较传统统计学习方法有显著提升。该模型可为企业客户关系管理提供高精度的流失预警工具,支持数据驱动的客户价值评估与营销策略优化。 展开更多
关键词 客户流失预测 统计学习模型 极端梯度提升树 逻辑回归 特征转换 数据平衡 特征提取
在线阅读 下载PDF
应用优化最大熵模型的珍稀濒危玉兰属物种适生区预测
9
作者 李秀玉 唐继敏 +2 位作者 殷晓洁 刘一飞 李子康 《东北林业大学学报》 CAS 北大核心 2025年第1期64-72,共9页
依据中国9种珍稀濒危玉兰属(Yulania spach)物种的地理分布数据及37个环境因子数据,利用R语言ENMeval包优化最大熵模型(MaxEnt)的正则化乘数(RM)和要素组合(FC)参数,提高模型模拟精度,以便更好的预测出各物种在基准期和未来3种气候情景... 依据中国9种珍稀濒危玉兰属(Yulania spach)物种的地理分布数据及37个环境因子数据,利用R语言ENMeval包优化最大熵模型(MaxEnt)的正则化乘数(RM)和要素组合(FC)参数,提高模型模拟精度,以便更好的预测出各物种在基准期和未来3种气候情景的潜在适生区分布趋势,并分析影响其分布的主要环境因子。结果表明:(1)最大熵模型优化后,各珍稀濒危玉兰属物种的受试者工作特征曲线(ROC)下面积(AUC)值均在0.95以上,表明模型模拟效果极好,可用于中国珍稀濒危玉兰属物种地理分布模拟;(2)影响珍稀濒危玉兰属潜在分布的主要环境因子,贡献率从大到小依次为,最冷月最低温(BIO6,46.38%)、等温性(BIO3,13.83%)、坡度(SLO,8.03%)、最暖季降水量(BIO18,7.57%)、最干月降水量(BIO14,6.78%),其中,对各物种潜在适生区分布影响最大的影响因子为最冷月最低温,在存在概率最高时,各物种的最冷月最低温均在0℃左右;(3)在未来2061—2080年3种不同的气候情景时,光叶玉兰、青皮玉兰、凹叶玉兰及紫玉兰总适生区面积呈扩大趋势,增加面积在7 398~879 439 km^(2);景宁玉兰、罗田玉兰、天目玉兰、宝华玉兰、滇藏玉兰总适生区面积呈缩减趋势,减小面积在1 605~669 830 km^(2)。 展开更多
关键词 气候变化 珍稀濒危树种 玉兰属 优化最大熵模型 适生区预测
在线阅读 下载PDF
一种CMA数值预报模式代码质量检测方法与实现
10
作者 李佳静 杨泽 +3 位作者 王彬 刘易凡 董泽信 孟涛 《应用气象学报》 北大核心 2025年第2期155-163,共9页
中国气象局(CMA)数值预报的统筹研发对支撑平台的能力建设提出了更高要求,其中一个重要方面就是对数值预报模式代码的质量检测能力。目前缺乏有效针对数值预报模式代码的质量检测方法和工具,尤其对于性能缺陷和大规模代码的检测不能满... 中国气象局(CMA)数值预报的统筹研发对支撑平台的能力建设提出了更高要求,其中一个重要方面就是对数值预报模式代码的质量检测能力。目前缺乏有效针对数值预报模式代码的质量检测方法和工具,尤其对于性能缺陷和大规模代码的检测不能满足需要。为解决上述问题,该文针对子程序定义、数组操作和I/O操作等常见编程规则设计检测方法。该方法采用程序代码解析、抽象语法树匹配和流敏感的静态程序检测等关键技术,其中对分支和循环语句的分析方法有效避免了路径爆炸问题。基于该方法的检测工具在数值预报科创平台V1.0代码协同开发栏目提供使用,并应用于CMA区域数值模式的国省统筹研发。 展开更多
关键词 数值预报模式代码 代码质量 抽象语法树匹配 流敏感程序分析 有穷状态机
在线阅读 下载PDF
基于Logistic回归的砀山春霜冻预测模型研究与应用
11
作者 张欣然 《安徽农学通报》 2025年第4期108-112,共5页
本研究利用2011—2018年3—5月砀山国家基本气象观测站日最低草面温度、日最低气温、日最低0 cm地温、日平均相对湿度、日最小相对湿度以及日平均露点温度观测数据和春霜冻资料,使用Logistic回归分析建立春霜冻预测模型,并对预测模型进... 本研究利用2011—2018年3—5月砀山国家基本气象观测站日最低草面温度、日最低气温、日最低0 cm地温、日平均相对湿度、日最小相对湿度以及日平均露点温度观测数据和春霜冻资料,使用Logistic回归分析建立春霜冻预测模型,并对预测模型进行计算和检验,利用MICAPS软件对模型进行应用。结果表明,采用Logistic回归方法得到的影响砀山春霜冻出现的解释因子为日最低气温、日最低0 cm地温以及日平均露点温度,将这3个因子作为变量建立预测模型。该模型的检验准确率和应用准确率均在90%以上。综上,本研究建立的春霜冻预测模型使用方便快捷、预测准确率高,可应用于实际生产。 展开更多
关键词 梨树 春霜冻 LOGISTIC回归 预测模型
在线阅读 下载PDF
基于GBDT算法的基桩竖向承载力预测方法 被引量:1
12
作者 徐志军 赵世鹏 +2 位作者 王政权 田江涛 宗飞龙 《河南理工大学学报(自然科学版)》 CAS 北大核心 2024年第2期186-193,共8页
目的为研究支撑-半刚接钢框架结构体系的抗震性能,方法设计了一榀由嵌套式单边螺栓与T型钢构成的半刚性梁柱节点的中心支撑钢框架,并进行了拟静力试验与有限元数值模拟,通过观测整个试验现象,分析了其滞回、承载力、刚度退化、耗能等抗... 目的为研究支撑-半刚接钢框架结构体系的抗震性能,方法设计了一榀由嵌套式单边螺栓与T型钢构成的半刚性梁柱节点的中心支撑钢框架,并进行了拟静力试验与有限元数值模拟,通过观测整个试验现象,分析了其滞回、承载力、刚度退化、耗能等抗震指标。结果结果表明:试件破坏过程明显经历了弹性段、塑性段、破坏段三个阶段,试件破坏模式主要为支撑受压失稳破坏,塑性变形主要累积在支撑体系上,整体呈现延性破坏特征;支撑断裂后,梁柱及T型钢节点无明显塑性变形,钢框架仍具有较高的安全储备,符合“强节点、弱构件”设计原则,表明了结构具有两道抗震防线;结论支撑与半刚接钢框架协同工作使得试件具有较高的抗侧刚度抵抗水平变形,且承载力较高、滞回性能稳定、耗能能力优良;单边螺栓在试验过程中的受力性能较普通高强螺栓并无较大差别,未出现严重的预紧力松弛现象,并能高效的保持螺栓预紧力。通过有限元数值模拟分析可知,减小支撑长细比,虽能有效提高结构的抗震性能,但长细比较小会导致支撑刚度增大,加速其余构件的损坏。故应以考虑结构的延性为前提,降低支撑的长细比,才能有效提高结构的抗震性能。 展开更多
关键词 基桩竖向承载力 梯度提升决策树 预测模型 评价指标 鲁棒性
在线阅读 下载PDF
储粮仓仓壁动态侧压力的树模型预测方法
13
作者 徐志军 彭舒停 +2 位作者 赵世鹏 范量 余汉华 《科学技术与工程》 北大核心 2024年第26期11158-11166,共9页
针对储粮仓卸料时仓壁动态侧压力难以准确预测的问题,利用机器学习方法中的树模型建立了仓壁动态侧压力预测模型。首先,分析了仓壁动态侧压力的主要影响因素为筒仓的结构尺寸、贮料的物理参数及测点位置。利用收集的496组仓壁动态侧压... 针对储粮仓卸料时仓壁动态侧压力难以准确预测的问题,利用机器学习方法中的树模型建立了仓壁动态侧压力预测模型。首先,分析了仓壁动态侧压力的主要影响因素为筒仓的结构尺寸、贮料的物理参数及测点位置。利用收集的496组仓壁动态侧压力数据,构建机器学习预测模型的数据集。然后,基于树模型,建立了仓壁动态侧压力的决策树(decision tree,DT)预测模型,在此基础上,利用Bagging算法和Boosting算法,建立了仓壁动态侧压力的随机森林(random forest,RF)预测模型和梯度提升树(gradient boosting decision tree,GBDT)预测模型。通过对比3种预测模型在测试集的均方误差(mean-square error,MSE)、决定系数和相对误差,表明GBDT预测模型的泛化性能最优。最后,通过开展模型试验和数值模拟,对GBDT预测模型进行验证,结果表明拟合良好。同时,根据树模型的分枝原理,判断出仓壁动态侧压力影响因素的重要性,得到对于贮料的物理参数,密度的重要性排第一;对于筒仓的结构尺寸,卸料口尺寸排第一。因此,在进行储粮仓设计时,建议优先考虑仓内散体物料的密度和仓的卸料口尺寸。 展开更多
关键词 储粮仓 动态侧压力 树模型 参数寻优 预测模型
在线阅读 下载PDF
基于WOA-XGBoost的膜下滴灌棉花蒸散量预测模型 被引量:2
14
作者 曹缘 王振华 +3 位作者 张继红 刘宁宁 李文昊 张金珠 《排灌机械工程学报》 CSCD 北大核心 2024年第12期1280-1286,共7页
为了科学准确地预测膜下滴灌棉花蒸散量,基于鲸鱼优化算法(whale optimization algorithm,WOA)和极端梯度提升树(XGBoost),提出了WOA-XGBoost棉花蒸散量预测模型.采用最大互信息系数(maximal information coefficient,MIC)筛选影响棉花... 为了科学准确地预测膜下滴灌棉花蒸散量,基于鲸鱼优化算法(whale optimization algorithm,WOA)和极端梯度提升树(XGBoost),提出了WOA-XGBoost棉花蒸散量预测模型.采用最大互信息系数(maximal information coefficient,MIC)筛选影响棉花蒸散量的关键因素,依据相关系数排序构建输入组合,代入WOA-XGBoost模型进行模拟.并与XGBoost,SVM,WOA-SVM和PSO-XGBoost预测结果进行对比验证.结果表明:太阳辐射、最低气温、最高气温、相对湿度、风速和土壤温度与棉花蒸散量相关性较大,其MIC值分别为0.722,0.546,0.496,0.475,0.379和0.219,基于上述6个因素构建的WOA-XGBoost模型综合性能最优,R^(2),MAE,RMSE和MAPE分别为0.922,0.038 mm/h,0.064 mm/h和0.221,预测精度均优于相同输入参数下的其他4种模型.因此,推荐使用WOA-XGBoost模型模拟相关因素与膜下滴灌棉花蒸散量之间的非线性关系.研究可为精确计算膜下滴灌棉花蒸散量提供科学依据,为灌溉决策优化提供参考. 展开更多
关键词 蒸散量 棉花 极端梯度提升树模型 鲸鱼优化算法 预测模型
在线阅读 下载PDF
基于梯度提升树模型的坡耕地土壤水蚀模拟与分析 被引量:1
15
作者 李潼亮 赵梓鉴 +5 位作者 李斌斌 张风宝 郭正 何琪琳 何庆 杨明义 《水土保持学报》 CSCD 北大核心 2024年第3期54-63,共10页
[目的]针对黄土高原坡耕地土壤侵蚀过程复杂、人为干扰强烈且难以量化的特点,利用机器学习定量解析主要影响因素对坡耕地土壤水蚀的作用与贡献,模拟分析坡耕地土壤水蚀特征并探究其机理,为坡耕地土壤侵蚀的预报提供基础支撑。[方法]基... [目的]针对黄土高原坡耕地土壤侵蚀过程复杂、人为干扰强烈且难以量化的特点,利用机器学习定量解析主要影响因素对坡耕地土壤水蚀的作用与贡献,模拟分析坡耕地土壤水蚀特征并探究其机理,为坡耕地土壤侵蚀的预报提供基础支撑。[方法]基于黄土高原子洲试验站坡耕地小区1959—1969年产流产沙观测数据,精细化表征其影响因子,运用梯度提升树模型对侵蚀量和径流深的变化及其影响因素的贡献进行分析。[结果]数据集中次降雨侵蚀量(0~122.72 t/km^(2))、径流深(0.02~17.20 mm)、降雨历时(2~1410 min)及平均雨强(0.02~4.63 mm)属强变异,变异系数均>1,且多数变量呈右偏态;在相同训练集和测试集划分情况下,对侵蚀量模型预测精度(R^(2)=0.81)略优于径流深模型(R^(2)=0.80),但侵蚀量模型的层数(8层)大于径流深模型(5层),表明侵蚀机理相较径流机理更为复杂;通过梯度提升树模型与SHAP算法对自变量重要性进行排序发现,影响侵蚀模型与径流模型的自变量重要性不同。[结论]受特征提取的限制,在侵蚀量与径流深较小时预测结果不理想,未来研究应当通过引入更多自变量组合方式寻找更多相关变量以提高对侵蚀事件的预测。产流和产沙的主要影响因素存在差异,降水本身特征对产流过程起主要作用,侵蚀产沙过程中主要受到降水与地形相关自变量的共同影响。基于数据驱动,为揭示黄土高原坡耕地侵蚀机理提供参考,并为区域坡耕地土壤侵蚀防治提供科学依据。 展开更多
关键词 预报模型 梯度提升树模型 坡耕地 黄土坡面
在线阅读 下载PDF
基于3种机器学习算法构建宫颈癌术后尿潴留风险预测模型 被引量:8
16
作者 陆宇 江会 《护理研究》 北大核心 2024年第1期24-30,共7页
目的:运用决策树、逻辑回归和支持向量机构建宫颈癌根治性切除术后尿潴留风险预测模型并比较性能,为评估及预防宫颈癌术后尿潴留提供参考依据。方法:回顾性收集459例宫颈癌根治性切除术病人的临床资料,采用决策树、支持向量机和逻辑回归... 目的:运用决策树、逻辑回归和支持向量机构建宫颈癌根治性切除术后尿潴留风险预测模型并比较性能,为评估及预防宫颈癌术后尿潴留提供参考依据。方法:回顾性收集459例宫颈癌根治性切除术病人的临床资料,采用决策树、支持向量机和逻辑回归3种机器学习方法构建宫颈癌根治性切除术后尿潴留风险预测模型,采用准确性、召回率、精确率、F1指数和受试者工作特征(ROC)曲线下面积(AUC)评价模型性能。结果:共纳入病人的年龄、疾病分期、体质指数等8个变量。选择80%的数据集(367例)作为训练集,20%的数据集(92例)作为验证集,结果显示,决策树在训练集和验证集中准确率、召回率、精确率、F1指数和AUC都比支持向量机和逻辑回归更优,说明决策树在构建宫颈癌术后尿潴留风险预测模型中具有较高的准确率及较好的泛化性能;支持向量机在训练集中准确率、召回率、精确率、F1指数和AUC都比逻辑回归更优。同时,在验证集中,支持向量机的召回率和F1指数比逻辑回归更优,但是支持向量机的准确率、精确率和AUC却比逻辑回归差,说明支持向量机在宫颈癌术后尿潴留数据集中的泛化能力比逻辑回归差。结论:决策树在构建宫颈癌根治性切除术后尿潴留风险预测模型中具有较高的性能及较好的泛化能力,可为相关临床决策提供指导建议。 展开更多
关键词 宫颈癌 尿潴留 危险因素 机器学习 预测模型 决策树 支持向量机 逻辑回归
在线阅读 下载PDF
基于TPE-Informer模型的铁路继电器寿命预测 被引量:2
17
作者 聂靖杰 刘树鑫 +2 位作者 邢朝健 许静 李艳凯 《电气工程学报》 CSCD 北大核心 2024年第3期98-106,共9页
针对如何准确、高效地预测铁路继电器寿命问题,提出一种基于TPE-Informer模型的铁路继电器寿命预测方法。首先,搭建铁路继电器电寿命试验平台,获取其整个生命周期的退化数据,从中提取出能够反映其运行状态的特征参数;其次,将提取的特征... 针对如何准确、高效地预测铁路继电器寿命问题,提出一种基于TPE-Informer模型的铁路继电器寿命预测方法。首先,搭建铁路继电器电寿命试验平台,获取其整个生命周期的退化数据,从中提取出能够反映其运行状态的特征参数;其次,将提取的特征参数输入Informer模型进行训练,利用多头稀疏自注意力机制挖掘特征信息前后状态的关联性;最后,利用非标准贝叶斯优化算法(Tree-structured parzen estimator,TPE)优化Informer模型超参数,以获得更好的预测性能。采用试验平台采集数据对模型验证,并与其他三种深度学习算法进行结果对比。试验结果表明,所提预测模型比RNN、LSTM和Informer模型预测精度高,平均精度达到96.52%,误差率小,稳定性好,证明了该预测模型应用的可行性。 展开更多
关键词 铁路继电器 寿命预测 非标准贝叶斯优化算法 Informer模型
在线阅读 下载PDF
3种机器学习算法对维持性血液透析病人衰弱风险预测性能比较 被引量:8
18
作者 汪丹丹 姚侃斐 祝雪花 《护理研究》 北大核心 2024年第1期8-16,共9页
目的:应用Logistic回归、决策树CART和随机森林3种机器学习算法分别构建维持性血液透析病人衰弱风险预测模型,比较3种模型的预测效果。方法:选取2021年10月—2022年3月在杭州市2家三级甲等医院接受维持性血液透析治疗的病人485例,按照7... 目的:应用Logistic回归、决策树CART和随机森林3种机器学习算法分别构建维持性血液透析病人衰弱风险预测模型,比较3种模型的预测效果。方法:选取2021年10月—2022年3月在杭州市2家三级甲等医院接受维持性血液透析治疗的病人485例,按照7∶3的比例随机分为训练集(n=341)和测试集(n=144),运用Logistic回归、决策树CART和随机森林建立维持性血液透析病人衰弱风险预测模型,采用准确率、灵敏度、特异度、阳性预测值、阴性预测值、Kappa系数和受试者工作特征(ROC)曲线下面积(AUC)对3种模型的预测性能进行比较。结果:训练集中,Logistic回归、决策树CART和随机森林的准确率分别为91.79%、91.50%、97.95%,特异度为96.84%、92.11%、96.91%,灵敏度为85.43%、90.73%、99.32%,阳性预测值为95.56%、90.13%、96.05%,阴性预测值为89.32%、92.59%、99.47%,Kappa值为0.832,0.828,0.958,AUC值为0.971,0.954,0.998。对3种模型的AUC值进行检验,结果发现随机森林模型与其余两种模型差异有统计学意义(P<0.05)。年龄、性别、查尔森合并疾病指数和营养风险筛查评分为3种预测模型的共同预测因子。结论:随机森林模型对维持性血液透析病人衰弱风险的预测性能优于Logistic回归和决策树CART。 展开更多
关键词 维持性血液透析 衰弱 预测模型 LOGISTIC回归 决策树 随机森林
在线阅读 下载PDF
基于决策树法构建深静脉置管并发 导管相关性感染的风险预测模型及防控策略分析 被引量:6
19
作者 龚利平 李建 +2 位作者 陈忠英 李金贵 郭彦 《军事护理》 CSCD 北大核心 2024年第6期52-54,共3页
目的 以决策树法构建深静脉置管(deep venous cetheterization,DVC)并发导管相关性感染的风险预测模型,为医护人员制订相关防控策略提供依据。方法 2019年1月至2021年12月,采用便利抽样法选取深圳市某三级综合性医院就诊的DVC患者2202... 目的 以决策树法构建深静脉置管(deep venous cetheterization,DVC)并发导管相关性感染的风险预测模型,为医护人员制订相关防控策略提供依据。方法 2019年1月至2021年12月,采用便利抽样法选取深圳市某三级综合性医院就诊的DVC患者2202例为研究对象,根据有未发生导管相关性感染将其分成感染组与非感染组,以二元Logistic回归分析法与决策树法分别创建DVC并发导管相关性感染的预测模型,并评估上述两种模型的风险预测效果。结果 年龄≥65岁、糖尿病、长期置管、重复置管、白蛋白<30 g/L等均是DVC患者发生导管相关性感染的独立危险因素(P<0.05);决策树模型中,重复置管是DVC患者并发导管相关性感染最重要的预测因子;DVC患者并发导管相关性感染决策树模型的受试者特征曲线下面积(area under curve, AUC)值为0.808(95%CI:0.758~0.858)。结论 构建的DVC患者并发导管相关性感染的决策树模型的应用价值较高,可作为医护人员筛选潜在的导管相关性感染患者的依据。 展开更多
关键词 决策树 深静脉置管 导管相关性感染 风险预测模型
在线阅读 下载PDF
LOLIMOT模型在CNG发动机NO_(x)排放预测试验中的应用
20
作者 刘佳奇 卢炽华 刘志恩 《重庆大学学报》 CAS CSCD 北大核心 2024年第1期9-20,共12页
为解决在选择性催化还原技术(selective catalytic reduction,SCR)的控制策略开发中局部线性模型树(local linear model tree,LOLIMOT)排放模型预测精度不足的问题,提出一种通过优化空间边界,将原模型的超矩形输入空间约束在物理意义范... 为解决在选择性催化还原技术(selective catalytic reduction,SCR)的控制策略开发中局部线性模型树(local linear model tree,LOLIMOT)排放模型预测精度不足的问题,提出一种通过优化空间边界,将原模型的超矩形输入空间约束在物理意义范围内的改进LOLIMOT模型。通过某天然气发动机的辨识试验,从分布特征和计算原理角度,分析了该方法对预测结果的影响。结果表明:与原算法相比,改进算法的线性相关度R2提升了1.9%,验证了改进策略的有效性。改进LOLIMOT算法具备较高的收敛速度和稳定性,在排放模型领域具备一定的应用优势。 展开更多
关键词 天然气发动机 NO_(x)排放 预测模型 局部线性模型树
在线阅读 下载PDF
上一页 1 2 6 下一页 到第
使用帮助 返回顶部