期刊文献+
共找到177,317篇文章
< 1 2 250 >
每页显示 20 50 100
Preparation and sustained release performance of multi-core capsules based on fragrance-loaded Pickering emulsions
1
作者 Xinyi Liu Juanbo Chen +4 位作者 Haoyue Hou Jiawei Hou Meiling Shi Sa Zeng Tao Meng 《日用化学工业(中英文)》 北大核心 2025年第3期286-294,共9页
Naturally degradable capsule provides a platform for sustained fragrance release.However,practical challenges such as low encapsulation efficiency and difficulty in sustained release are still limited in using fragran... Naturally degradable capsule provides a platform for sustained fragrance release.However,practical challenges such as low encapsulation efficiency and difficulty in sustained release are still limited in using fragranceloaded capsules.In this work,the natural materials sodium alginate and gelatine are dissolved and act as the aqueous phase,lavender is dissolved in caprylic/capric triglyceride(GTCC)as the oil phase,and SiO_(2) nanoparticles with neutralwettability as a solid emulsifier to form O/W Pickering emulsions simultaneously.Finally,multi-core capsules are prepared using the drop injection method with emulsions as templates.The results show that the capsules have been successfully prepared with a spherical morphology and multi-core structure,and the encapsulation rate of multi-core capsules can reach up to 99.6%.In addition,the multi-core capsules possess desirable sustained release performance,the cumulative sustained release rate of fragrance at 25℃over 49 days is only 32.5%.It is attributed to the significant protection of multi-core structure,Pickering emulsion nanoparticle membranes,and hydrogel network shell for encapsulated fragrance.This study is designed to deliver a new strategy for using sustained-release technology with fragrance in food,cosmetics,textiles,and other fields. 展开更多
关键词 FRAGRANCE Pickering emulsion multi-core capsules encapsulation efficiency sustained release
在线阅读 下载PDF
Blast waveform tailoring using controlled venting in blast simulators and shock tubes 被引量:1
2
作者 Edward Chern Jinn Gan Alex Remennikov David Ritzel 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第7期14-26,共13页
A critical challenge of any blast simulation facility is in producing the widest possible pressure-impulse range for matching against equivalent high-explosive events.Shock tubes and blast simulators are often constra... A critical challenge of any blast simulation facility is in producing the widest possible pressure-impulse range for matching against equivalent high-explosive events.Shock tubes and blast simulators are often constrained with the lack of effective ways to control blast wave profiles and as a result have a limited performance range.Some wave shaping techniques employed in some facilities are reviewed but often necessitate extensive geometric modifications,inadvertently cause flow anomalies,and/or are only applicable under very specific configurations.This paper investigates controlled venting as an expedient way for waveforms to be tuned without requiring extensive modifications to the driver or existing geometry and could be widely applied by existing and future blast simulation and shock tube facilities.The use of controlled venting is demonstrated experimentally using the Advanced Blast Simulator(shock tube)at the Australian National Facility of Physical Blast Simulation and via numerical flow simulations with Computational Fluid Dynamics.Controlled venting is determined as an effective method for mitigating the impact of re-reflected waves within the blast simulator.This control method also allows for the adjustment of parameters such as tuning the peak overpressure,the positive phase duration,and modifying the magnitude of the negative phase and the secondary shock of the blast waves.This paper is concluded with an illustration of the potential expanded performance range of the Australian blast simulation facility when controlled venting for blast waveform tailoring as presented in this paper is applied. 展开更多
关键词 Advanced blast simulator Shock wave propagation Far-field explosion Blast loads Blast waves Computational fluid dynamics
在线阅读 下载PDF
基于Plant Simulation的双离合器装配线仿真优化 被引量:1
3
作者 江涛 刘雪梅 《农业装备与车辆工程》 2025年第6期97-102,共6页
在工程项目制定后,通过搭建仿真模型,对项目方案进行分析评估、优化与改进,有助于解决实际工程项目可能出现的问题,减少人力物力浪费,提高优化效率。以某企业DC300双离合器装配线为研究对象,结合装配工艺流程,利用仿真软件Plant Simulat... 在工程项目制定后,通过搭建仿真模型,对项目方案进行分析评估、优化与改进,有助于解决实际工程项目可能出现的问题,减少人力物力浪费,提高优化效率。以某企业DC300双离合器装配线为研究对象,结合装配工艺流程,利用仿真软件Plant Simulation构建装配线仿真模型,并进行装配线运行过程仿真。通过对生产线节拍、设备利用率等相关数据进行分析评估,找出生产线的瓶颈工位,通过工艺结构调整,实现了生产线节拍的优化与改善,达到了生产要求指标。同时进行了多组仿真实验,完成了托盘数量的优化。 展开更多
关键词 Plant simulation 双离合器 装配线
在线阅读 下载PDF
基于Plant Simulation的产线车辆调度问题
4
作者 刘浩然 刘松凯 陈斌 《科学技术与工程》 北大核心 2025年第6期2406-2418,共13页
随着“中国制造2025计划”的进行,军工工业要推行产线无人化,而自动引导车(automated guided vehicle,AGV)作为全自动化生产线的主要物流载体,其调度的优劣直接决定了整个产线的产能和效率。由于军工场所对于安全性的要求,无法采用无线... 随着“中国制造2025计划”的进行,军工工业要推行产线无人化,而自动引导车(automated guided vehicle,AGV)作为全自动化生产线的主要物流载体,其调度的优劣直接决定了整个产线的产能和效率。由于军工场所对于安全性的要求,无法采用无线通信等手段,只能采用点对点的光通讯方式,这也使得AGV通讯的实时性变差。基于Plant Simulation软件,建立了仿真系统模型,打通了该物流仿真软件与现场控制器的实时数据交互通道,实现了仿真系统与现实同步运行,完成了物流仿真软件与现场控制器的无缝连接,有效地解决了军工工业没有无线造成AGV调度实时性差的难题。实验证明,这种方法有效地简化了调度系统的编写难度,并使系统整体的实时性能提高了0.058 s。与传统方法相比,编写时间缩短了9.7倍,调试时间更缩短了22倍。为军工产线实现全自动化奠定基础,并为在危险场所使用脉动生产线提供技术支持。 展开更多
关键词 AGV调度 Plant simulation 离散仿真 实时性 智能调度
在线阅读 下载PDF
基于Plant Simulation仿真技术的装配生产线优化研究 被引量:1
5
作者 崔俊杰 马臻 郭海青 《南方农机》 2025年第2期145-149,共5页
【目的】优化装备生产线,缩短产品交付周期。【方法】基于Plant Simulation仿真技术,对装配生产线进行建模、编程、仿真、分析和优化,有效计算产品产量和成本,识别并优化装配生产线的瓶颈工位。【结果】优化后的三维产线仿真模型产量增... 【目的】优化装备生产线,缩短产品交付周期。【方法】基于Plant Simulation仿真技术,对装配生产线进行建模、编程、仿真、分析和优化,有效计算产品产量和成本,识别并优化装配生产线的瓶颈工位。【结果】优化后的三维产线仿真模型产量增幅接近10%,生产效率明显提升。【结论】通过将智能制造技能竞赛和科研教学活动相结合,能够凝练总结竞赛内容,促使教师紧盯前沿知识,创新改革教学内容,实现以赛促教、以赛促学、以赛促改、以赛促建的多重目标。 展开更多
关键词 Plant simulation仿真技术 生产优化 瓶颈工位
在线阅读 下载PDF
Marine Predator Algorithm-based Sliding Mode Control of a Novel Motion Simulator for High Column Sloshing Experiments
6
作者 DU Zun-feng CHEN Xiang-yu +2 位作者 BAI Hao ZHU Hai-ming HAN Mu-xuan 《船舶力学》 EI CSCD 北大核心 2024年第12期1835-1848,共14页
Sloshing experiment is crucial to determine the reaction performance of regeneration columns on an offshore floating platform.A novel type of column motion simulating device and a Marine Predator Algorithm-based Slidi... Sloshing experiment is crucial to determine the reaction performance of regeneration columns on an offshore floating platform.A novel type of column motion simulating device and a Marine Predator Algorithm-based Sliding Mode Controller(MPA-SMC)are proposed for such sloshing experiments.The simulator consists of a Stewart platform and a steel framework.The Stewart platform is located at the column's center of gravity(CoG)and supported by the steel framework.The platform's hydraulic servo system is controlled by a sliding mode controller with parameters optimized by MPA to improve robustness and precision.A numerical sloshing experiment is conducted using the proposed device and controller.The results show that the novel motion simulator has lower torque during the column sloshes,and the proposed controller performs better than a well-tuned PID controller in terms of target tracking precision and anti-interference capability. 展开更多
关键词 regeneration column sloshing experiment motion simulator Stewart platform sliding mode control marine predator algorithm
在线阅读 下载PDF
基于AMESim—Simulink的双离合全动力换挡拖拉机挡位控制研究
7
作者 王建 仲潜 +1 位作者 朱孝凯 郭华 《中国农机化学报》 北大核心 2025年第11期268-274,共7页
传统构型的全动力换挡变速箱所需离合器数目较多且动力传递时需多个离合器结合,存在动力损失大和制造成本高的问题,基于双离合变速箱构型,设计一款新型的双离合全动力换挡变速箱。该构型的变速箱仅有4个离合器,工作过程中仅通过单个离... 传统构型的全动力换挡变速箱所需离合器数目较多且动力传递时需多个离合器结合,存在动力损失大和制造成本高的问题,基于双离合变速箱构型,设计一款新型的双离合全动力换挡变速箱。该构型的变速箱仅有4个离合器,工作过程中仅通过单个离合器和3对齿轮副便可完成动力传递,动力传递路径短、机械损失小;对变速箱的挡位参数和动力性自动换挡策略进行设计。基于AMESim和Simulink建立仿真模型,对拖拉机的驱动力特性和作业工况进行仿真分析。结果表明:在驱动力特性中,配备该变速箱的拖拉机理论输出牵引力最大约为440.15 kN,能够很好地克服配套农机具的阻力,满足设计要求;在道路运输和犁耕作业工况仿真中,所设计的动力性自动换挡策略满足工况动力需求。 展开更多
关键词 拖拉机 双离合全动力换挡变速箱 自动换挡 换挡策略仿真
在线阅读 下载PDF
Graded density impactor design via machine learning and numerical simulation:Achieve controllable stress and strain rate 被引量:1
8
作者 Yahui Huang Ruizhi Zhang +6 位作者 Shuaixiong Liu Jian Peng Yong Liu Han Chen Jian Zhang Guoqiang Luo Qiang Shen 《Defence Technology(防务技术)》 2025年第9期262-273,共12页
The graded density impactor(GDI)dynamic loading technique is crucial for acquiring the dynamic physical property parameters of materials used in weapons.The accuracy and timeliness of GDI structural design are key to ... The graded density impactor(GDI)dynamic loading technique is crucial for acquiring the dynamic physical property parameters of materials used in weapons.The accuracy and timeliness of GDI structural design are key to achieving controllable stress-strain rate loading.In this study,we have,for the first time,combined one-dimensional fluid computational software with machine learning methods.We first elucidated the mechanisms by which GDI structures control stress and strain rates.Subsequently,we constructed a machine learning model to create a structure-property response surface.The results show that altering the loading velocity and interlayer thickness has a pronounced regulatory effect on stress and strain rates.In contrast,the impedance distribution index and target thickness have less significant effects on stress regulation,although there is a matching relationship between target thickness and interlayer thickness.Compared with traditional design methods,the machine learning approach offers a10^(4)—10^(5)times increase in efficiency and the potential to achieve a global optimum,holding promise for guiding the design of GDI. 展开更多
关键词 Machine learning Numerical simulation Graded density impactor Controllable stress-strain rate loading Response surface methodology
在线阅读 下载PDF
Molecular simulation study of the microstructures and properties of pyridinium ionic liquid[HPy][BF_(4)]mixed with acetonitrile
9
作者 XU Jian-Qiang MA Zhao-Peng +2 位作者 CHENG Si LIU Zhi-Cong ZHU Guang-Lai 《原子与分子物理学报》 CAS 北大核心 2025年第4期27-32,共6页
The microstructures and thermodynamic properties of mixed systems comprising pyridinium ionic liquid[HPy][BF_(4)]and acetonitrile at different mole fractions were studied using molecular dynamics simulation in this wo... The microstructures and thermodynamic properties of mixed systems comprising pyridinium ionic liquid[HPy][BF_(4)]and acetonitrile at different mole fractions were studied using molecular dynamics simulation in this work.The following properties were determined:density,self-diffusion coefficient,excess molar volume,and radial distribution function.The results show that with an increase in the mole fraction of[HPy][BF_(4)],the self-diffusion coefficient decreases.Additionally,the excess molar volume initially decreases,reaches a minimum,and then increases.The rules of radial distribution functions(RDFs)of characteristic atoms are different.With increasing the mole fraction of[HPy][BF_(4)],the first peak of the RDFs of HA1-F decreases,while that of CT6-CT6 rises at first and then decreases.This indicates that the solvent molecules affect the polar and non-polar regions of[HPy][BF_(4)]differently. 展开更多
关键词 Pyridinium ionic liquids Thermodynamic properties Molecular dynamics simulation Radial distribution functions
在线阅读 下载PDF
Simulation and Thermal Runaway Experiment Study on Immersion and Cold Plate Cooling with 4680 Cylindrical Battery Pack
10
作者 Wan Fulai Zhao Qingliang +2 位作者 Luo Yitao Zhang Feng Li Guangjun 《汽车技术》 北大核心 2025年第10期10-20,共11页
This study focuses on the thermal management of 4680-type cylindrical lithium-ion battery packs utilizing NCM811 chemistry.It establishes coupled multi-physics models for both immersion and serpentine cold plate cooli... This study focuses on the thermal management of 4680-type cylindrical lithium-ion battery packs utilizing NCM811 chemistry.It establishes coupled multi-physics models for both immersion and serpentine cold plate cooling systems.Through a combination of numerical simulation and experimental validation,the technical advantages and mechanisms of immersion cooling are systematically explored.Simulation results indicate that under a 3C fast-charging condition(inlet temperature 20℃,flow rate 36 L/min),the immersion cooling structure 3demonstrates a triple enhancement in thermal performance compared to the cold plate structure 1:a 13.06%reduction in peak temperature,a 31.67%decrease in overall maximum temperature difference,and a 47.62%decrease in single-cell temperature deviation,while also reducing flow resistance by 33.61%.Furthermore,based on the immersion cooling model,a small battery module comprising seven cylindrical cells was designed for thermal runaway testing via nail penetration.The results show that the peak temperature of the triggered cell was limited to 437.6℃,with a controllable temperature rise gradient of only 3.35℃/s and a rapid cooling rate of 0.6℃/s.The maximum temperature rise of adjacent cells was just 64.8℃,effectively inhibiting thermal propagation.Post-test disassembly revealed that the non-triggered cells retained>99.2%of their original voltage and>99%structural integrity,confirming the module’s ability to achieve“localized failure with global stability.” 展开更多
关键词 Immersion cooling 4680 battery Thermal runaway Numerical simulation
在线阅读 下载PDF
Multidisciplinary and multi-fidelity coupling methods in aircraft engine simulations
11
作者 YANG Xin XIE Pengfu +2 位作者 DONG Xuezhi HE Ai TAN Chunqing 《推进技术》 北大核心 2025年第5期1-12,共12页
To address the limitations of existing coupling methods in aero-engine system simulation,which fail to adaptively adjust iterative parameters and coupling relationships,which can result in low efficiency and in⁃stabil... To address the limitations of existing coupling methods in aero-engine system simulation,which fail to adaptively adjust iterative parameters and coupling relationships,which can result in low efficiency and in⁃stability,this study introduces a‘Dynamic Event-Driven Co-Simulation’algorithm integrated with decision tree algorithms.This algorithm separates the overall coupling relationships and the main solver from the primary mod⁃el,utilizing a dynamic event monitoring module to adaptively adjust simulation strategies,including iteration pa⁃rameters,coupling relationships,and convergence criteria.This facilitates efficient adaptive simulations of dy⁃namic events while balancing solution accuracy and computational efficiency.The research focuses on a twinshaft turbofan engine,establishing six system-level models that encompass overall performance and various sub⁃systems based on three coupling methods,along with a multidisciplinary multi-fidelity simulation framework in⁃corporating a 3D CFD nozzle model.The study tests both model exchange and coupled simulation methods under a 14 s transient acceleration and deceleration scenario.In a 100%throttle condition,a high-fidelity nozzle model is used to analyze the sensitivity of different convergence criteria on computational efficiency and accuracy.Re⁃sults indicate that the accuracy and efficiency achieved with this method are comparable to those of PROOSIS soft⁃ware(18 s and 35 s,respectively),while being 71%more efficient than Simulink software(62 s and 120 s,re⁃spectively).Furthermore,appropriately relaxing the convergence criteria for the 0D model(from 10-6 to 10-4)while enhancing those for the 3D model(from 3000 steps to 6000 steps)can effectively balance computational accuracy and efficiency. 展开更多
关键词 AERO-ENGINE Multi-fidelity simulation Overall performance CO-simulATION Integrated model Zooming strategy
在线阅读 下载PDF
Numerical Simulation of Microstructure Refinement of Al-Cu-Mg-Ag Alloy During Solidification
12
作者 ZHU Shiqing ZHANG Hong CHEN Linghao 《材料科学与工程学报》 北大核心 2025年第4期513-519,524,共8页
Al-Cu-Mg-Ag alloys have become a research hotspot because of its good heat resistance.Its excellent mechanical properties are inseparable from the regulation of the structure by researchers.The method of material stru... Al-Cu-Mg-Ag alloys have become a research hotspot because of its good heat resistance.Its excellent mechanical properties are inseparable from the regulation of the structure by researchers.The method of material structure simulation has become more and more perfect.This study employs numerical simulation to investigate the microstructure evolution of Al-Cu-Mg-Ag alloys during solidification with the aim of controlling its structure.The size distribution of Ti-containing particles in an Al-Ti-B master alloy was characterized via microstructure observation,serving as a basis for optimizing the nucleation density parameters for particles of varying radii in the phase field model.The addition of refiner inhibited the growth of dendrites and no longer produced coarse dendrites.With the increase of refiner,the grains gradually tended to form cellular morphology.The refined grains were about 100μm in size.Experimental validation of the simulated as-cast grain morphology was conducted.The samples were observed by metallographic microscope and scanning electron microscope.The addition of refiner had a significant effect on the refinement of the alloy,and the average grain size after refinement was also about 100μm.At the same time,the XRD phase identification of the alloy was carried out.The observation of the microstructure morphology under the scanning electron microscope showed that the precipitated phase was mainly concentrated on the grain boundary.The Al_(2)Cu accounted for about 5%,and the matrix phase FCC accounted for about 95%,which also corresponded well with the simulation results. 展开更多
关键词 Al-Cu-Mg-Ag alloy Phase field simulation Dendrite refinement Phase diagram calculation
在线阅读 下载PDF
An Algorithm for Cloud-based Web Service Combination Optimization Through Plant Growth Simulation
13
作者 Li Qiang Qin Huawei +1 位作者 Qiao Bingqin Wu Ruifang 《系统仿真学报》 北大核心 2025年第2期462-473,共12页
In order to improve the efficiency of cloud-based web services,an improved plant growth simulation algorithm scheduling model.This model first used mathematical methods to describe the relationships between cloud-base... In order to improve the efficiency of cloud-based web services,an improved plant growth simulation algorithm scheduling model.This model first used mathematical methods to describe the relationships between cloud-based web services and the constraints of system resources.Then,a light-induced plant growth simulation algorithm was established.The performance of the algorithm was compared through several plant types,and the best plant model was selected as the setting for the system.Experimental results show that when the number of test cloud-based web services reaches 2048,the model being 2.14 times faster than PSO,2.8 times faster than the ant colony algorithm,2.9 times faster than the bee colony algorithm,and a remarkable 8.38 times faster than the genetic algorithm. 展开更多
关键词 cloud-based service scheduling algorithm resource constraint load optimization cloud computing plant growth simulation algorithm
在线阅读 下载PDF
Rapid simulation and phase distortion evaluation of thermal blooming effect in internal laser propagation channels
14
作者 WU Dong-yu LI Xiang +4 位作者 LI Jia-sheng GAO Liang SONG Yan-song WANG Si DONG Ke-yan 《中国光学(中英文)》 北大核心 2025年第3期520-534,共15页
During the propagation of high-power lasers within internal channels,the laser beam heats the propagation medium,causing the thermal blooming effect that degrades the beam quality at the output.The intricate configura... During the propagation of high-power lasers within internal channels,the laser beam heats the propagation medium,causing the thermal blooming effect that degrades the beam quality at the output.The intricate configuration of the optical path within the internal channel necessitates complex and time-consuming efforts to assess the impact of thermal blooming effect on the optical path.To meet the engineering need for rapid evaluation of thermal blooming effect in optical paths,this study proposed a rapid simulation method for the thermal blooming effect in internal optical paths based on the finite element method.This method discretized the fluid region into infinitesimal elements and employed finite element method for flow field analysis.A simplified analytical model of the flow field region in complex internal channels was established,and regions with similar thermal blooming effect were divided within this model.Based on the calculated optical path differences within these regions,numerical simulations of phase distortion caused by thermal blooming were conducted.The calculated result were compared with those obtained using the existing methods.The findings reveal that for complex optical paths,the discrepancy between the two approaches is less than 3.6%,with similar phase distortion patterns observed.For L-type units,this method and the existing methods identify the same primary factors influencing aberrations and exhibit consistent trends in their variation.This method was used to analyze the impact of thermal blooming effect in a straight channel under different gravity directions.The results show that phase distortion varies with changes in the direction of gravity,and the magnitude of the phase difference is strongly correlated with the component of gravity perpendicular to the optical axis.Compared to the existing methods,this approach offers greater flexibility,obviates the need for complex custom analysis programming.The analytical results of this method enable a rapid assessment of the thermal blooming effect in optical paths within the internal channel.This is especially useful during the engineering design.These results also provide crucial references for developing strategies to suppress thermal blooming effect. 展开更多
关键词 high-power laser thermal blooming effect beam phase numerical simulation thermal coupling effect beam control system
在线阅读 下载PDF
A hierarchical simulation framework incorporating full-link physical response for short-range infrared detection
15
作者 Mingze Gao Lixin Xu +4 位作者 Shiyuan Hu Xiaolong Shi Jiaming Gao Yanjiang Wu Huimin Chen 《Defence Technology(防务技术)》 2025年第8期351-363,共13页
Missile-borne short-range infrared detection(SIRD)technology is commonly used in military ground target detection.In complex battlefield environments,achieving precise strike on ground target is a challenging task.How... Missile-borne short-range infrared detection(SIRD)technology is commonly used in military ground target detection.In complex battlefield environments,achieving precise strike on ground target is a challenging task.However,real battlefield data is limited,and equivalent experiments are costly.Currently,there is a lack of comprehensive physical modeling and numerical simulation methods for SIRD.To this end,this study proposes a SIRD simulation framework incorporating full-link physical response,which is integrated through the radiative transfer layer,the sensor response layer,and the model-driven layer.In the radiative transfer layer,a coupled dynamic detection model is established to describe the external optical channel response of the SIRD system by combining the infrared radiation model and the geometric measurement model.In the sensor response layer,considering photoelectric conversion and signal processing,the internal signal response model of the SIRD system is established by a hybrid mode of parametric modeling and analog circuit analysis.In the model-driven layer,a cosimulation application based on a three-dimensional virtual environment is proposed to drive the full-link physical model,and a parallel ray tracing method is employed for real-time synchronous simulation.The proposed simulation framework can provide pixel-level signal output and is verified by the measured data.The evaluation results of the root mean square error(RMSE)and the Pearson correlation coefficient(PCC)show that the simulated data and the measured data achieve good consistency,and the evaluation results of the waveform eigenvalues indicate that the simulated signals exhibit low errors compared to the measured signals.The proposed simulation framework has the potential to acquire large sample datasets of SIRD under various complex battlefield environments and can provide an effective data source for SIRD application research. 展开更多
关键词 Short-range infrared detection Full-link physical response Signal level simulation
在线阅读 下载PDF
An improved efficient adaptive method for large-scale multiexplosives explosion simulations
16
作者 Tao Li Cheng Wang Baojun Shi 《Defence Technology(防务技术)》 2025年第3期28-47,共20页
Shock wave caused by a sudden release of high-energy,such as explosion and blast,usually affects a significant range of areas.The utilization of a uniform fine mesh to capture sharp shock wave and to obtain precise re... Shock wave caused by a sudden release of high-energy,such as explosion and blast,usually affects a significant range of areas.The utilization of a uniform fine mesh to capture sharp shock wave and to obtain precise results is inefficient in terms of computational resource.This is particularly evident when large-scale fluid field simulations are conducted with significant differences in computational domain size.In this work,a variable-domain-size adaptive mesh enlargement(vAME)method is developed based on the proposed adaptive mesh enlargement(AME)method for modeling multi-explosives explosion problems.The vAME method reduces the division of numerous empty areas or unnecessary computational domains by adaptively suspending enlargement operation in one or two directions,rather than in all directions as in AME method.A series of numerical tests via AME and vAME with varying nonintegral enlargement ratios and different mesh numbers are simulated to verify the efficiency and order of accuracy.An estimate of speedup ratio is analyzed for further efficiency comparison.Several large-scale near-ground explosion experiments with single/multiple explosives are performed to analyze the shock wave superposition formed by the incident wave,reflected wave,and Mach wave.Additionally,the vAME method is employed to validate the accuracy,as well as to investigate the performance of the fluid field and shock wave propagation,considering explosive quantities ranging from 1 to 5 while maintaining a constant total mass.The results show a satisfactory correlation between the overpressure versus time curves for experiments and numerical simulations.The vAME method yields a competitive efficiency,increasing the computational speed to 3.0 and approximately 120,000 times in comparison to AME and the fully fine mesh method,respectively.It indicates that the vAME method reduces the computational cost with minimal impact on the results for such large-scale high-energy release problems with significant differences in computational domain size. 展开更多
关键词 Large-scale explosion Shock wave Adaptive method Fluid field simulations Efficient method
在线阅读 下载PDF
UAF-based integration of design and simulation model for system-of-systems
17
作者 FENG Yimin GE Ping +2 位作者 SHAO Yanli ZOU Qiang LIU Yusheng 《Journal of Systems Engineering and Electronics》 2025年第1期108-126,共19页
Model-based system-of-systems(SOS)engineering(MBSoSE)is becoming a promising solution for the design of SoS with increasing complexity.However,bridging the models from the design phase to the simulation phase poses si... Model-based system-of-systems(SOS)engineering(MBSoSE)is becoming a promising solution for the design of SoS with increasing complexity.However,bridging the models from the design phase to the simulation phase poses significant challenges and requires an integrated approach.In this study,a unified requirement modeling approach is proposed based on unified architecture framework(UAF).Theoretical models are proposed which compose formalized descriptions from both topdown and bottom-up perspectives.Based on the description,the UAF profile is proposed to represent the SoS mission and constituent systems(CS)goal.Moreover,the agent-based simulation information is also described based on the overview,design concepts,and details(ODD)protocol as the complement part of the SoS profile,which can be transformed into different simulation platforms based on the eXtensible markup language(XML)technology and model-to-text method.In this way,the design of the SoS is simulated automatically in the early design stage.Finally,the method is implemented and an example is given to illustrate the whole process. 展开更多
关键词 model-based systems engineering unified architecture framework(UAF) system-of-systems engineering model transformation simulATION
在线阅读 下载PDF
车道偏离预警系统的Carsim/Simulink联合仿真研究
18
作者 邹俊逸 聂朝航 +1 位作者 许小伟 严运兵 《机械设计与制造》 北大核心 2025年第4期169-172,177,共5页
考虑车辆行驶偏离过程侧向速度呈非线性变化,利用侧向速度信息将TLC算法和CCP算法融合。基于驾驶员当前状态提出一种联合预警算法,从而解决单一预警算法不同工况下准确度存在较大差异的问题,通过准确识别判断车辆当前状态以降低误警率... 考虑车辆行驶偏离过程侧向速度呈非线性变化,利用侧向速度信息将TLC算法和CCP算法融合。基于驾驶员当前状态提出一种联合预警算法,从而解决单一预警算法不同工况下准确度存在较大差异的问题,通过准确识别判断车辆当前状态以降低误警率。为验证算法有效性,基于Matlab搭建系统模型,并结合Carsim实现联合仿真。仿真结果显示,联合算法较CCP算法提前0.49s触发预警,同时减少了CCP算法存在的漏警情况,较TLC算法误预警率降低了46%,增强了预警系统的自适应性。 展开更多
关键词 车道偏离预警 决策算法 联合仿真 主动安全 驾驶员意图
在线阅读 下载PDF
基于RELAP5和Simulink的核电汽轮发电机组耦合仿真研究
19
作者 赵冉 林萌 +2 位作者 贺军 黄仕龙 林俊义 《核科学与工程》 北大核心 2025年第2期265-272,共8页
为准确计算核电厂热力系统与内外电网之间的相互作用,需建立核电厂热力系统与电力系统之间的耦合分析模型。由于RELAP5热工水力系统程序不具备电力系统暂态仿真分析功能,而Simulink具备强大的电力系统暂态仿真分析功能。据此本文提出将R... 为准确计算核电厂热力系统与内外电网之间的相互作用,需建立核电厂热力系统与电力系统之间的耦合分析模型。由于RELAP5热工水力系统程序不具备电力系统暂态仿真分析功能,而Simulink具备强大的电力系统暂态仿真分析功能。据此本文提出将RELAP5中的汽轮机模型与Simulink中的同步发电机模型进行耦合从而实现核电厂热力系统与电力系统联合仿真计算功能,精确计算热力系统和电力系统瞬态过程相互扰动和影响,同时利用现场实验数据对耦合仿真模型进行了验证,结果表明:所采用的耦合计算方法可以准确模拟热力系统和电力系统瞬态过程参数变化趋势及规律,研究成果可拓展RELAP5应用功能并更好地完善核电厂仿真模型。 展开更多
关键词 REALP5程序 simulink程序 耦合仿真 电力系统 汽轮机发电机组
在线阅读 下载PDF
BAF-强化人工湿地污水处理工艺的Simulink仿真模型构建
20
作者 韩晓丽 李黛青 张镇松 《环境化学》 北大核心 2025年第6期2109-2117,共9页
本文以Monod模型为基础,建立BAF-强化人工湿地对有机污染物、氮去除的simulink仿真模型,将模型预测结果和一级反应动力学模型预测结果进行比对,并通过搭建BAF-强化人工湿地实验装置所取得的实测数据进行验证.研究结果显示:本模型对出水... 本文以Monod模型为基础,建立BAF-强化人工湿地对有机污染物、氮去除的simulink仿真模型,将模型预测结果和一级反应动力学模型预测结果进行比对,并通过搭建BAF-强化人工湿地实验装置所取得的实测数据进行验证.研究结果显示:本模型对出水COD、氨氮和总氮的模拟平均值误差分别为12.03%、6.47%和1.91%,一级动力学模型模拟平均值误差分别为13.80%、14.80%和0.29%.相较于一级动力学模型,本模型在对出水有机污染物以及氨氮的模拟表现更为出色.在对出水总氮的模拟上,本模型与一级动力学模型都能取得较为理想的效果.本模型能较好预测有机污染物、氨氮、总氮的降解效果,可为BAF-强化人工湿地设计和运行效率提供模拟数据,同时为该系统有机污染物、氮的降解途径研究提供依据. 展开更多
关键词 BAF-强化人工湿地 污水处理系统 动力学 仿真模型.
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部