It is a challenging problem to provide quality-of-service (QoS) guarantees in next generation high-speed network, and the QoS routing is one of the key issues of the problem. For the problem of multi-constrained QoS...It is a challenging problem to provide quality-of-service (QoS) guarantees in next generation high-speed network, and the QoS routing is one of the key issues of the problem. For the problem of multi-constrained QoS routing in high-speed network, especially under the inaccurate link state information, the success ratio of the different constraint combination is analyzed statistically, and a constraint analysis method based on the computer simulation is proposed. Furthermore, the approximately equal loose-tight order relation between each two constraints is constructed, and then an algorithm based on the experimental analysis is presented. Finally, the simulation result demonstrates that the algorithm has the higher success ratio, and the theoretical analysis proves its correctness and universality.展开更多
The problem of allocating a number of exploration tasks to a team of mobile robots in dynamic environments was studied. The team mission is to visit several distributed targets. The path cost of target is proportional...The problem of allocating a number of exploration tasks to a team of mobile robots in dynamic environments was studied. The team mission is to visit several distributed targets. The path cost of target is proportional to the distance that a robot has to move to visit the target. The team objective is to minimize the average path cost of target over all targets. Finding an optimal allocation is strongly NP-hard. The proposed algorithm can produce a near-optimal solution to it. The allocation can be cast in terms of a multi-round single-item auction by which robots bid on targets. In each auction round, one target is assigned to a robot that produces the lowest path cost of the target. The allocated targets form a forest where each tree corresponds a robot’s exploring targets set. Each robot constructs an exploring path through depth-first search in its target tree. The time complexity of the proposed algorithm is polynomial. Simulation experiments show that the allocating method is valid.展开更多
A new coordination scheme for multi-robot systems is proposed. A state space model of the multi- robot system is defined and constructed in which the system's initial and goal states are included along with the task ...A new coordination scheme for multi-robot systems is proposed. A state space model of the multi- robot system is defined and constructed in which the system's initial and goal states are included along with the task definition and the system's internal and external constraints. Task accomplishment is considered a transition of the system state in its state space (SS) under the system's constraints. Therefore, if there exists a connectable path within reachable area of the SS from the initial state to the goal state, the task is realizable. The optimal strategy for the task realization under constraints is investigated and reached by searching for the optimal state transition trajectory of the robot system in the SS. Moreover, if there is no connectable path, which means the task cannot be performed Successfully, the task could be transformed to be realizable by making the initial state and the goal state connectable and finding a path connecting them in the system's SS. This might be done via adjusting the system's configuration and/or task constraints. Experiments of multi-robot formation control with obstacles in the environment are conducted and simulation results show the validity of the proposed method.展开更多
Analysis and design techniques for cooperative flocking of nonholonomic multi-robot systems with connectivity maintenance on directed graphs are presented. First, a set of bounded and smoothly distributed control prot...Analysis and design techniques for cooperative flocking of nonholonomic multi-robot systems with connectivity maintenance on directed graphs are presented. First, a set of bounded and smoothly distributed control protocols are devised via carefully designing a class of bounded artificial potential fields (APF) which could guarantee the connectivity maintenance, col ision avoidance and distance stabilization simultaneously during the system evolution. The connectivity of the underlying network can be preserved, and the desired stable flocking behavior can be achieved provided that the initial communication topology is strongly connected rather than undirected or balanced, which relaxes the constraints for group topology and extends the previous work to more generalized directed graphs. Furthermore, the proposed control algorithm is extended to solve the flocking problem with a virtual leader. In this case, it is shown that al robots can asymptotically move with the desired velocity and orientation even if there is only one informed robot in the team. Finally, nontrivial simulations and experiments are conducted to verify the effectiveness of the proposed algorithm.展开更多
This survey presents a comprehensive review of vari-ous methods and algorithms related to passing-through control of multi-robot systems in cluttered environments.Numerous studies have investigated this area,and we id...This survey presents a comprehensive review of vari-ous methods and algorithms related to passing-through control of multi-robot systems in cluttered environments.Numerous studies have investigated this area,and we identify several avenues for enhancing existing methods.This survey describes some models of robots and commonly considered control objec-tives,followed by an in-depth analysis of four types of algo-rithms that can be employed for passing-through control:leader-follower formation control,multi-robot trajectory planning,con-trol-based methods,and virtual tube planning and control.Fur-thermore,we conduct a comparative analysis of these tech-niques and provide some subjective and general evaluations.展开更多
Motion planning is critical to realize the autonomous operation of mobile robots.As the complexity and randomness of robot application scenarios increase,the planning capability of the classical hierarchical motion pl...Motion planning is critical to realize the autonomous operation of mobile robots.As the complexity and randomness of robot application scenarios increase,the planning capability of the classical hierarchical motion planners is challenged.With the development of machine learning,the deep reinforcement learning(DRL)-based motion planner has gradually become a research hotspot due to its several advantageous feature.The DRL-based motion planner is model-free and does not rely on the prior structured map.Most importantly,the DRL-based motion planner achieves the unification of the global planner and the local planner.In this paper,we provide a systematic review of various motion planning methods.Firstly,we summarize the representative and state-of-the-art works for each submodule of the classical motion planning architecture and analyze their performance features.Then,we concentrate on summarizing reinforcement learning(RL)-based motion planning approaches,including motion planners combined with RL improvements,map-free RL-based motion planners,and multi-robot cooperative planning methods.Finally,we analyze the urgent challenges faced by these mainstream RLbased motion planners in detail,review some state-of-the-art works for these issues,and propose suggestions for future research.展开更多
A quality of service (QoS) or constraint-based routing selection needs to find a path subject to multiple constraints through a network. The problem of finding such a path is known as the multi-constrained path (MC...A quality of service (QoS) or constraint-based routing selection needs to find a path subject to multiple constraints through a network. The problem of finding such a path is known as the multi-constrained path (MCP) problem, and has been proven to be NP-complete that cannot be exactly solved in a polynomial time. The NPC problem is converted into a multiobjective optimization problem with constraints to be solved with a genetic algorithm. Based on the Pareto optimum, a constrained routing computation method is proposed to generate a set of nondominated optimal routes with the genetic algorithm mechanism. The convergence and time complexity of the novel algorithm is analyzed. Experimental results show that multiobjective evolution is highly responsive and competent for the Pareto optimum-based route selection. When this method is applied to a MPLS and metropolitan-area network, it will be capable of optimizing the transmission performance.展开更多
文摘It is a challenging problem to provide quality-of-service (QoS) guarantees in next generation high-speed network, and the QoS routing is one of the key issues of the problem. For the problem of multi-constrained QoS routing in high-speed network, especially under the inaccurate link state information, the success ratio of the different constraint combination is analyzed statistically, and a constraint analysis method based on the computer simulation is proposed. Furthermore, the approximately equal loose-tight order relation between each two constraints is constructed, and then an algorithm based on the experimental analysis is presented. Finally, the simulation result demonstrates that the algorithm has the higher success ratio, and the theoretical analysis proves its correctness and universality.
基金Project(A1420060159) supported by the National Basic Research of China projects(60234030 60404021) supported bythe National Natural Science Foundation of China
文摘The problem of allocating a number of exploration tasks to a team of mobile robots in dynamic environments was studied. The team mission is to visit several distributed targets. The path cost of target is proportional to the distance that a robot has to move to visit the target. The team objective is to minimize the average path cost of target over all targets. Finding an optimal allocation is strongly NP-hard. The proposed algorithm can produce a near-optimal solution to it. The allocation can be cast in terms of a multi-round single-item auction by which robots bid on targets. In each auction round, one target is assigned to a robot that produces the lowest path cost of the target. The allocated targets form a forest where each tree corresponds a robot’s exploring targets set. Each robot constructs an exploring path through depth-first search in its target tree. The time complexity of the proposed algorithm is polynomial. Simulation experiments show that the allocating method is valid.
基金the National Natural Science Foundation of China (60428303).
文摘A new coordination scheme for multi-robot systems is proposed. A state space model of the multi- robot system is defined and constructed in which the system's initial and goal states are included along with the task definition and the system's internal and external constraints. Task accomplishment is considered a transition of the system state in its state space (SS) under the system's constraints. Therefore, if there exists a connectable path within reachable area of the SS from the initial state to the goal state, the task is realizable. The optimal strategy for the task realization under constraints is investigated and reached by searching for the optimal state transition trajectory of the robot system in the SS. Moreover, if there is no connectable path, which means the task cannot be performed Successfully, the task could be transformed to be realizable by making the initial state and the goal state connectable and finding a path connecting them in the system's SS. This might be done via adjusting the system's configuration and/or task constraints. Experiments of multi-robot formation control with obstacles in the environment are conducted and simulation results show the validity of the proposed method.
基金supported by the National Natural Science Foundation of China(61175112)the Foundation for Innovative Research Groups of the National Natural Science Foundation of China(G61321002)+3 种基金the Projects of Major International(Regional)Joint Research Program(61120106010)the Beijing Education Committee Cooperation Building Foundationthe Program for Changjiang Scholars and Innovative Research Team in University(IRT1208)the ChangJiang Scholars Program and the Beijing Outstanding Ph.D.Program Mentor Grant(20131000704)
文摘Analysis and design techniques for cooperative flocking of nonholonomic multi-robot systems with connectivity maintenance on directed graphs are presented. First, a set of bounded and smoothly distributed control protocols are devised via carefully designing a class of bounded artificial potential fields (APF) which could guarantee the connectivity maintenance, col ision avoidance and distance stabilization simultaneously during the system evolution. The connectivity of the underlying network can be preserved, and the desired stable flocking behavior can be achieved provided that the initial communication topology is strongly connected rather than undirected or balanced, which relaxes the constraints for group topology and extends the previous work to more generalized directed graphs. Furthermore, the proposed control algorithm is extended to solve the flocking problem with a virtual leader. In this case, it is shown that al robots can asymptotically move with the desired velocity and orientation even if there is only one informed robot in the team. Finally, nontrivial simulations and experiments are conducted to verify the effectiveness of the proposed algorithm.
文摘This survey presents a comprehensive review of vari-ous methods and algorithms related to passing-through control of multi-robot systems in cluttered environments.Numerous studies have investigated this area,and we identify several avenues for enhancing existing methods.This survey describes some models of robots and commonly considered control objec-tives,followed by an in-depth analysis of four types of algo-rithms that can be employed for passing-through control:leader-follower formation control,multi-robot trajectory planning,con-trol-based methods,and virtual tube planning and control.Fur-thermore,we conduct a comparative analysis of these tech-niques and provide some subjective and general evaluations.
基金supported by the National Natural Science Foundation of China (62173251)the“Zhishan”Scholars Programs of Southeast University+1 种基金the Fundamental Research Funds for the Central UniversitiesShanghai Gaofeng&Gaoyuan Project for University Academic Program Development (22120210022)
文摘Motion planning is critical to realize the autonomous operation of mobile robots.As the complexity and randomness of robot application scenarios increase,the planning capability of the classical hierarchical motion planners is challenged.With the development of machine learning,the deep reinforcement learning(DRL)-based motion planner has gradually become a research hotspot due to its several advantageous feature.The DRL-based motion planner is model-free and does not rely on the prior structured map.Most importantly,the DRL-based motion planner achieves the unification of the global planner and the local planner.In this paper,we provide a systematic review of various motion planning methods.Firstly,we summarize the representative and state-of-the-art works for each submodule of the classical motion planning architecture and analyze their performance features.Then,we concentrate on summarizing reinforcement learning(RL)-based motion planning approaches,including motion planners combined with RL improvements,map-free RL-based motion planners,and multi-robot cooperative planning methods.Finally,we analyze the urgent challenges faced by these mainstream RLbased motion planners in detail,review some state-of-the-art works for these issues,and propose suggestions for future research.
基金the Natural Science Foundation of Anhui Province of China (050420212)the Excellent Youth Science and Technology Foundation of Anhui Province of China (04042069).
文摘A quality of service (QoS) or constraint-based routing selection needs to find a path subject to multiple constraints through a network. The problem of finding such a path is known as the multi-constrained path (MCP) problem, and has been proven to be NP-complete that cannot be exactly solved in a polynomial time. The NPC problem is converted into a multiobjective optimization problem with constraints to be solved with a genetic algorithm. Based on the Pareto optimum, a constrained routing computation method is proposed to generate a set of nondominated optimal routes with the genetic algorithm mechanism. The convergence and time complexity of the novel algorithm is analyzed. Experimental results show that multiobjective evolution is highly responsive and competent for the Pareto optimum-based route selection. When this method is applied to a MPLS and metropolitan-area network, it will be capable of optimizing the transmission performance.