期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
一种基于多分类语义分析和个性化的语义检索方法 被引量:1
1
作者 马应龙 李鹏鹏 张敬旭 《东南大学学报(自然科学版)》 EI CAS CSCD 北大核心 2014年第2期261-265,共5页
为了进一步提升语义检索的精度和改善用户体验,提出了一种基于多分类语义分析和个性化的语义检索方法.首先,利用改进的多分类语义分析方法实现目标文档的向量化,并建立词向量库;然后,利用支持向量机对文档进行分类,并结合文档类别生成... 为了进一步提升语义检索的精度和改善用户体验,提出了一种基于多分类语义分析和个性化的语义检索方法.首先,利用改进的多分类语义分析方法实现目标文档的向量化,并建立词向量库;然后,利用支持向量机对文档进行分类,并结合文档类别生成标签索引.在检索时,根据词向量库的引导,使用用户历史检索记录和个人信息优化检索结果.实验结果显示,基于该方法的系统的检索精度、平均DCG和nDCG指标值分别达到0.7,7.267和0.890,较基于Lucene方法和Yahoo Directory方法所得结果的均值分别高出31%,36%和19%.在时间复杂度上,每次检索的平均耗时为0.669 s,较Lucene方法仅增加了0.326 s.由此可见,该方法提高了检索的精度和综合相关度,且额外的时间消耗较少. 展开更多
关键词 语义检索 多分类语义分析 词向量库 个性化算法 multi-classification SEMANTIC analysis (MSA) TERM vector database (TVDB )
在线阅读 下载PDF
Improved particle swarm optimization algorithm for fuzzy multi-class SVM 被引量:18
2
作者 Ying Li Bendu Bai Yanning Zhang 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2010年第3期509-513,共5页
An improved particle swarm optimization(PSO) algorithm is proposed to train the fuzzy support vector machine(FSVM) for pattern multi-classification.In the improved algorithm,the particles studies not only from its... An improved particle swarm optimization(PSO) algorithm is proposed to train the fuzzy support vector machine(FSVM) for pattern multi-classification.In the improved algorithm,the particles studies not only from itself and the best one but also from the mean value of some other particles.In addition,adaptive mutation was introduced to reduce the rate of premature convergence.The experimental results on the synthetic aperture radar(SAR) target recognition of moving and stationary target acquisition and recognition(MSTAR) dataset and character recognition of MNIST database show that the improved algorithm is feasible and effective for fuzzy multi-class SVM training. 展开更多
关键词 particle swarm optimization(PSO) fuzzy support vector machine(FSVM) adaptive mutation multi-classification.
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部