期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
基于GARCH模型MSVM的轴承故障诊断方法 被引量:8
1
作者 陶新民 徐晶 +1 位作者 杨立标 刘玉 《振动与冲击》 EI CSCD 北大核心 2010年第5期11-15,236-237,共5页
针对振动信号因非平稳性导致自回归(AR)模型无法有效描述信号特征的不足,提出一种基于广义自回归条件异方差(GARCH)模型多类支持向量机(MSVM)的故障诊断方法。该方法首先利用GARCH模型拟合各种故障信号,将所得模型参数作为故障诊断特征,... 针对振动信号因非平稳性导致自回归(AR)模型无法有效描述信号特征的不足,提出一种基于广义自回归条件异方差(GARCH)模型多类支持向量机(MSVM)的故障诊断方法。该方法首先利用GARCH模型拟合各种故障信号,将所得模型参数作为故障诊断特征,以MSVM作为故障诊断方法。试验结果验证了GARCH模型方法的可行性和有效性,同时将该方法同基于AR模型的方法及其改进方法进行比较,结果表明该方法在诊断率及诊断时间上都有明显提高。 展开更多
关键词 故障诊断GARCH模型 多类支持向量机
在线阅读 下载PDF
基于统计分析和多支持向量机的风电功率坡度事件分类预测 被引量:1
2
作者 李福东 吴敏 冯高熠 《上海交通大学学报》 EI CAS CSCD 北大核心 2012年第12期1971-1976,共6页
为准确评估风电功率变化行为的影响,优化风电系统控制,提出了基于统计分析和多支持向量机的风电功率坡度事件分类预测方法.通过对风电功率坡度事件进行定义和分类,利用风电场的实际运行数据,对不同统计周期和不同方向的坡度事件幅度分... 为准确评估风电功率变化行为的影响,优化风电系统控制,提出了基于统计分析和多支持向量机的风电功率坡度事件分类预测方法.通过对风电功率坡度事件进行定义和分类,利用风电场的实际运行数据,对不同统计周期和不同方向的坡度事件幅度分布和时间段分布进行了统计分析,找到了功率坡度事件变化的内在规律.在此基础上,将二元支持向量机(Support Vector Machine,SVM)拓展到多支持向量机(Multiple Support Vector Machines,MSVMs),建立了对功率坡度事件类别的一步和多步预测.实验结果表明,所提方法具有较高的坡度事件预测精度和稳定性,可以对风电功率变化进行准确的风险预测,有利于风电系统的优化控制. 展开更多
关键词 风电功率 坡度事件 多支持向量机 类别 预测
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部