期刊文献+
共找到199篇文章
< 1 2 10 >
每页显示 20 50 100
融合改进堆叠编码器和多层BiLSTM的入侵检测模型 被引量:3
1
作者 陈虹 姜朝议 +2 位作者 金海波 武聪 卢健波 《计算机工程与应用》 北大核心 2025年第3期306-314,共9页
针对基于机器学习入侵检测模型需要大量特征工程,且对不平衡数据处理欠佳,导致检测率低、误报率高等问题。构建了一种SE-MBL的入侵检测模型。采用自适应合成采样(ADASYN)方法对少数类样本进行样本扩展,解决数据不平衡问题,形成相对对称... 针对基于机器学习入侵检测模型需要大量特征工程,且对不平衡数据处理欠佳,导致检测率低、误报率高等问题。构建了一种SE-MBL的入侵检测模型。采用自适应合成采样(ADASYN)方法对少数类样本进行样本扩展,解决数据不平衡问题,形成相对对称的数据集。采用改进的堆叠自编码器进行数据降维,消除特征冗余,并引入Dropout机制来增强信息融合,提升模型的泛化能力。提出一种融合一维CNN和多层BiLSTM的模块,分别提取空间特征和时间特征,以提高模型的分类性能。在NSL-KDD和CICIDS2017数据集上的实验结果表明,该模型可以实现较高的正确率和召回率,优于传统机器学习和深度学习方法。 展开更多
关键词 网络安全 入侵检测 数据不平衡 数据降维 多层BiLSTM
在线阅读 下载PDF
数字经济是否缓解发展不平衡而促进共同富裕?——基于夜间灯光数据的不平衡测度 被引量:2
2
作者 许永洪 苏冰杰 《统计研究》 北大核心 2025年第7期3-16,共14页
致力于从微观数据层面衡量地区发展不平衡,本文首先采用VIIRS夜间灯光数据测算我国31个省份、293个地级市、2841个县的发展不平衡程度。其次,使用北京大学数字普惠金融指数、宏观经济统计数据构造数字经济发展指数,实证考察数字经济及... 致力于从微观数据层面衡量地区发展不平衡,本文首先采用VIIRS夜间灯光数据测算我国31个省份、293个地级市、2841个县的发展不平衡程度。其次,使用北京大学数字普惠金融指数、宏观经济统计数据构造数字经济发展指数,实证考察数字经济及其发展速度对地区发展不平衡的影响及作用机制。研究发现,数字经济有助于缓解地区发展不平衡,且相较于南方地区,数字经济缩小地区发展差距的效应在北方地区更显著,但此影响效果不会因资源禀赋差异而不同。此结论在选择数字经济发展速度作为核心解释变量时仍旧成立。传导机制检验显示,创新和创业水平是数字经济影响地区不平衡的主要传导机制。进一步分析结果表明,数字经济不仅会缓解地区发展不平衡,还有助于缓解地区发展不充分状况,从而为探索共同富裕目标的实现路径提供新的思路。 展开更多
关键词 数字经济 发展不平衡 泰尔指数 夜间灯光数据
在线阅读 下载PDF
基于改进辅助分类生成对抗网络与模型迁移策略结合的故障诊断方法 被引量:1
3
作者 李兴东 向星 +3 位作者 马诗浩 郭雨萱 潘宏鑫 宋明星 《液压与气动》 北大核心 2025年第8期21-34,共14页
液压轴向柱塞泵是液压系统的核心动力元件,对轴向柱塞泵进行故障诊断对于保证液压装备系统的安全可靠性运行至关重要。提出了一种改进的辅助分类生成对抗网络与模型迁移策略相结合的故障诊断方法,构建了故障诊断框架,并采用预训练-微调... 液压轴向柱塞泵是液压系统的核心动力元件,对轴向柱塞泵进行故障诊断对于保证液压装备系统的安全可靠性运行至关重要。提出了一种改进的辅助分类生成对抗网络与模型迁移策略相结合的故障诊断方法,构建了故障诊断框架,并采用预训练-微调策略提高了模型在目标域任务中的泛化能力,解决了传统深度学习诊断方法在实际运行过程中正常数据与故障数据数量因数据不平衡导致效果不佳甚至失效的问题。试验证明,该方法在样本不均衡时,其结构相似性值提高了20.4%,峰值信噪比值提高了5.4%,三种数据集在F1分数评估指标上分别可以达到96.3%、94.4%、92.5%,能够有效提高生产样本的质量和轴向柱塞泵的故障识别率。 展开更多
关键词 数据不平衡 生成对抗网络 残差网络 轴向柱塞泵 故障诊断
在线阅读 下载PDF
多源不平衡数据下基于联邦学习的谐波减速器故障诊断方法
4
作者 王玉静 叶柏宏 +2 位作者 康守强 刘连胜 孙宇林 《仪器仪表学报》 北大核心 2025年第6期317-329,共13页
针对工业机器人谐波减速器不同故障类别样本数量不平衡,以及单源信号获取信息往往有限,导致故障诊断准确率不高的问题,提出一种多源不平衡数据下基于联邦学习的谐波减速器故障诊断方法。该方法通过对不同用户的多源信号做小波变换,将一... 针对工业机器人谐波减速器不同故障类别样本数量不平衡,以及单源信号获取信息往往有限,导致故障诊断准确率不高的问题,提出一种多源不平衡数据下基于联邦学习的谐波减速器故障诊断方法。该方法通过对不同用户的多源信号做小波变换,将一维信号转换为二维图像,构建时频图数据集;利用改进的数据增强方法对不平衡数据集进行均衡处理;引入有效的通道注意力机制,并通过可学习的权重加权残差分支的输出,以增强模型对不同输入信号残差信息的适应性和对数据关键特征的提取能力;通过改进的多模态变分自编码器挖掘多源信号之间的互补信息进行特征融合,并采用焦点损失函数作为训练损失函数,使模型能够更关注错分频率较高的类别样本,构建多用户个性化本地模型;服务器端聚合用户端本地模型参数并更新全局模型,通过联邦学习保障用户端本地的孤岛隐私数据,从而对多源不平衡数据下谐波减速器进行故障诊断。通过搭建谐波减速器信号采集实验平台进行验证,所提方法能够有效提取谐波减速器多源不平衡数据的特征并实现信息融合,平均故障诊断准确率为98.8%,性能优于所对比的方法。 展开更多
关键词 数据不平衡 多源信息融合 联邦学习 谐波减速器 故障诊断
在线阅读 下载PDF
基于Attention-1DCNN-CE的加密流量分类方法
5
作者 耿海军 董赟 +3 位作者 胡治国 池浩田 杨静 尹霞 《计算机应用》 北大核心 2025年第3期872-882,共11页
针对传统加密流量识别方法存在多分类准确率低、泛化性不强以及易侵犯隐私等问题,提出一种结合注意力机制(Attention)与一维卷积神经网络(1DCNN)的多分类深度学习模型——Attention-1DCNN-CE。该模型包含3个核心部分:1)数据集预处理阶段... 针对传统加密流量识别方法存在多分类准确率低、泛化性不强以及易侵犯隐私等问题,提出一种结合注意力机制(Attention)与一维卷积神经网络(1DCNN)的多分类深度学习模型——Attention-1DCNN-CE。该模型包含3个核心部分:1)数据集预处理阶段,保留原始数据流中数据包间的空间关系,并根据样本分布构建成本敏感矩阵;2)在初步提取加密流量特征的基础上,利用Attention和1DCNN模型深入挖掘并压缩流量的全局与局部特征;3)针对数据不平衡这一挑战,通过结合成本敏感矩阵与交叉熵(CE)损失函数,显著提升少数类别样本的分类精度,进而优化模型的整体性能。实验结果表明,在BOT-IOT和TON-IOT数据集上该模型的整体识别准确率高达97%以上;并且该模型在公共数据集ISCX-VPN和USTC-TFC上表现优异,在不需要预训练的前提下,达到了与ET-BERT(Encrypted Traffic BERT)相近的性能;相较于PERT(Payload Encoding Representation from Transformer),该模型在ISCX-VPN数据集的应用类型检测中的F1分数提升了29.9个百分点。以上验证了该模型的有效性,为加密流量识别和恶意流量检测提供了解决方案。 展开更多
关键词 网络安全 加密流量 注意力机制 一维卷积神经网络 数据不平衡 成本敏感矩阵
在线阅读 下载PDF
基于加权与动态选择的不平衡数据流分类算法
6
作者 韩萌 李春鹏 +3 位作者 李昂 孟凡兴 何菲菲 张瑞华 《计算机工程与应用》 北大核心 2025年第10期79-95,共17页
在数据挖掘领域中,数据流挖掘是一项关键任务,旨在处理不断产生和演化的数据流。与传统的批处理数据挖掘不同,数据流挖掘强调对实时数据的处理和分析,具有更高的时效性和实用性。然而,现实世界的数据流中存在多类别不平衡、变化的类别... 在数据挖掘领域中,数据流挖掘是一项关键任务,旨在处理不断产生和演化的数据流。与传统的批处理数据挖掘不同,数据流挖掘强调对实时数据的处理和分析,具有更高的时效性和实用性。然而,现实世界的数据流中存在多类别不平衡、变化的类别不平衡比和概念漂移等实际挑战,会极大地降低分类器的性能。针对这些问题,提出了一种基于加权与动态选择的不平衡数据流分类算法(sample difficulty weighting and dynamic ensemble selection,SDW-DES),通过综合考虑样本难度和数据动态性,为实时应用提供可靠解决方案。引入一种基于样本分类难度的加权策略,结合样本的边际值和Focal Loss,以更有效地关注易分类错误的样本和少数类样本,从而提高分类器的准确性。提出一种灵活的动态集成选择方法,通过设计样本滑动窗口和困难样本滑动窗口,来综合分析分类器在不同窗口上的表现并加权,选出集成中最好的分类器进行预测,以适应数据分布的动态变化。在多种数据流环境和评估指标上与9种先进的算法进行了全面的实验评估,实验结果表明SDW-DES在4个评估指标中平均排名第一,并且更能够适应数据流中的不平衡和概念漂移问题。 展开更多
关键词 数据流分类 多类不平衡 概念漂移 样本加权 动态集成选择
在线阅读 下载PDF
混合特征平衡图注意力网络日志异常检测模型 被引量:3
7
作者 陈旭 张硕 +1 位作者 景永俊 王叔洋 《计算机工程与应用》 北大核心 2025年第1期308-320,共13页
针对现有方法忽略了日志异常数据不平衡和日志特征间的关联性,导致异常检测准确率低的问题。提出一种基于混合特征平衡图注意力网络的日志异常检测模型(HBGATLog)。构建混合日志图构建模块,通过混合特征提取模块提取日志数据的语义信息... 针对现有方法忽略了日志异常数据不平衡和日志特征间的关联性,导致异常检测准确率低的问题。提出一种基于混合特征平衡图注意力网络的日志异常检测模型(HBGATLog)。构建混合日志图构建模块,通过混合特征提取模块提取日志数据的语义信息、日志序列和时间结构,增强日志特征间的关联性,并采用日志图构建模块构建日志图,有效保留空间结构特征。设计平衡日志图生成模块,解决不平衡的日志数据导致检测结果偏向多数类问题。采用图日志异常检测模块进行异常检测。使用BGL、Thunderbird和HDFS三个公共数据集对HBGATLog进行验证,实验结果表明,F1 score分别达到了99.0%、98.7%和98.1%。证明HBGATLog不但能够解决日志数据不平衡问题,充分考虑日志数据特征的关联性,而且有效降低了漏检率。 展开更多
关键词 日志异常检测 日志分析 图神经网络 混合特征提取 数据不平衡
在线阅读 下载PDF
面向不平衡医疗数据的多阶段混合特征选择算法 被引量:3
8
作者 刘佳璇 李代伟 +3 位作者 任李娟 张海清 陈金京 杨瑞 《计算机工程与应用》 北大核心 2025年第2期158-169,共12页
为解决医疗数据中存在的特征高维和类别不平衡问题,在基于简单、快速和有效高维特征选择算法SFE(simple,fast and effective high-dimensional feature selection)的基础上,提出了一种面向不平衡医疗数据的多阶段混合特征选择算法HFSIM(... 为解决医疗数据中存在的特征高维和类别不平衡问题,在基于简单、快速和有效高维特征选择算法SFE(simple,fast and effective high-dimensional feature selection)的基础上,提出了一种面向不平衡医疗数据的多阶段混合特征选择算法HFSIM(hybrid feature selection for imbalanced medical data)。HFSIM算法采用改进的自适应边界SMOTE过采样技术,生成符合边界条件的新少数类实例以解决医学数据中类不平衡问题。同时,为了改善搜索空间多样性不足的问题,优化了SFE算法中的非选择操作符率参数UR(unselected rate),有效避免了算法过早收敛及易陷入局部最优的问题。将过滤式Fisher Score方法与优化UR参数后的算法有效结合,使算法能以较低的计算成本获得较好寻优能力。经实验验证,相比于SFE算法,HFSIM算法在Ovarian数据集上准确率达到99.67%,提升了2.11个百分点,G-means和F1分别提升了5.13和2.30个百分点。此外,通过对比特征数量和运行时间,证明了HFSIM算法既能保证算法精度又有效降低了计算成本。 展开更多
关键词 高维不平衡 特征选择 多阶段混合 医疗数据
在线阅读 下载PDF
基于深度学习的轴承故障小样本扩容及智能诊断 被引量:2
9
作者 刘迪洋 张清华 胡勤 《机床与液压》 北大核心 2025年第4期10-18,共9页
由于轴承长期处于正常运行状态,从而使得可采集的故障数据十分有限,缺少足够的故障数据导致它与正常数据之间产生了数据不均衡问题。为了解决该问题,提出一种改进的深度卷积生成对抗网络与Swin Transformer模型相结合的故障诊断新方法... 由于轴承长期处于正常运行状态,从而使得可采集的故障数据十分有限,缺少足够的故障数据导致它与正常数据之间产生了数据不均衡问题。为了解决该问题,提出一种改进的深度卷积生成对抗网络与Swin Transformer模型相结合的故障诊断新方法。对轴承的振动信号进行连续小波变换(CWT)将其转化为时频图;构建改进的深度卷积生成对抗网络对故障信号生成的时频图进行样本扩容,以解决其样本不均衡问题;最后利用Swin Transformer模型完成对轴承故障的分类识别。实验结果表明:所提方法不仅可以生成与真实样本相似度较高的生成样本,同时能准确有效地对轴承的各类故障进行分类识别。 展开更多
关键词 数据不均衡 故障诊断 生成对抗网络 小波变换 样本扩容
在线阅读 下载PDF
基于多模态时序对比生成网络的数据增强算法
10
作者 商柔 董宏丽 +3 位作者 王闯 周国强 管闯 闫天红 《控制理论与应用》 北大核心 2025年第4期805-815,共11页
针对工业故障诊断中的小样本和类不平衡问题,本文提出一种基于马尔可夫链的多模态时序对比生成模型(TCGN).首先,为了提升合成数据时间结构的真实性,设计了一种时序趋势一致化损失(TTC),以提升真实数据与合成数据之间时间演化规律的相似... 针对工业故障诊断中的小样本和类不平衡问题,本文提出一种基于马尔可夫链的多模态时序对比生成模型(TCGN).首先,为了提升合成数据时间结构的真实性,设计了一种时序趋势一致化损失(TTC),以提升真实数据与合成数据之间时间演化规律的相似度.随后,为了在增强数据集中形成有效且正确的决策边界,提出了一种类意识对比损失(CAC),以对齐真实数据与合成数据的类条件分布.此外,为了更好地维持不同学习任务之间的动态平衡,引入了一种基于马尔可夫链的多模态切换策略,以实现TCGN算法在生成、刻画、探索、收敛4个模态之间的自适应切换优化.最后,将所提出的TCGN算法应用于管道故障诊断.实验结果表明TCGN算法在视觉评估和量化指标方面均优于一些先进的生成算法,显著提高了故障诊断准确率. 展开更多
关键词 管道故障诊断 类别不平衡 时间序列 数据增强 马尔可夫链 多任务学习
在线阅读 下载PDF
基于多通道数据双层增强的样本不平衡故障诊断方法
11
作者 郭一鸣 童一飞 +3 位作者 何非 谢中取 宋世达 黄静 《兵工学报》 北大核心 2025年第2期287-300,共14页
在复杂制造过程中常需要采集并分析多通道数据以实现状态监测和故障诊断,针对现有方法难以处理多通道数据复杂时空相关结构和样本不平衡的问题,提出了一种基于多通道数据双层增强的样本不平衡故障诊断方法。所提模型具有2阶段数据增强... 在复杂制造过程中常需要采集并分析多通道数据以实现状态监测和故障诊断,针对现有方法难以处理多通道数据复杂时空相关结构和样本不平衡的问题,提出了一种基于多通道数据双层增强的样本不平衡故障诊断方法。所提模型具有2阶段数据增强和全局优化的特点,通过先学习故障特征再转化为多通道数据的方式实现数据增强,引入分布差异评估机制有效地描述不同通道之间的数据相关性,基于多目标的全局优化策略来提高生成数据的质量。通过实际案例验证所提方法的有效性,实验结果表明:双层增强方法能有效扩充多通道数据的样本量,全局优化策略可以提高生成数据在故障诊断中的性能。与现有模型相比,所提方法在多种样本不平衡场景下均具有较高的故障诊断准确率。 展开更多
关键词 多通道数据 样本不平衡故障诊断 双层数据增强 全局优化
在线阅读 下载PDF
基于改进CVAE-GAN的电力系统暂态稳定评估样本增强方法
12
作者 马彬喻 杨军 +5 位作者 彭晓涛 李蕊 申锦鹏 江克证 柳丹 曹侃 《电力自动化设备》 北大核心 2025年第9期216-224,共9页
实际电力系统的暂态失稳样本占比少,不平衡数据降低了数据驱动的暂态稳定评估的失稳样本识别率和可靠性。对此,提出了基于改进条件变分生成对抗网络(CVAE-GAN)的电力系统暂态稳定评估样本增强方法。通过改进输入样本组成比例提高模型对... 实际电力系统的暂态失稳样本占比少,不平衡数据降低了数据驱动的暂态稳定评估的失稳样本识别率和可靠性。对此,提出了基于改进条件变分生成对抗网络(CVAE-GAN)的电力系统暂态稳定评估样本增强方法。通过改进输入样本组成比例提高模型对失稳样本分布的学习能力,改进模型网络结构以适应电力系统量测数据特点,采用预训练方式为模型提供良好的初始状态促进训练的收敛。利用训练完成的改进CVAE-GAN模型合成高质量失稳样本,添加到原始样本中实现样本增强。重新训练分类器,实现在线暂态稳定评估。改进的IEEE 39节点系统和改进的南卡罗莱纳州500节点电网测试结果表明,所提方法能够有效学习原始数据分布特性,实现样本增强,从而提升暂态稳定评估精度和失稳样本的识别率。 展开更多
关键词 数据增强 数据不平衡 条件变分生成对抗网络 暂态稳定评估 电力系统
在线阅读 下载PDF
基于载荷数据的风电机组偏航系统故障诊断模型
13
作者 马磊 刘玉山 +4 位作者 黄虎 高俊云 褚俊龙 王灵梅 贾成真 《机电工程》 北大核心 2025年第9期1689-1697,共9页
针对山西某风电场机组偏航系统因载荷水平过高导致故障频发的工程问题,提出了一种基于载荷数据的风电机组偏航系统故障诊断方法。首先,建立了风电机组偏航系统载荷数学模型,得到了偏航系统承受的主要载荷;然后,应用GH Bladed软件搭建了... 针对山西某风电场机组偏航系统因载荷水平过高导致故障频发的工程问题,提出了一种基于载荷数据的风电机组偏航系统故障诊断方法。首先,建立了风电机组偏航系统载荷数学模型,得到了偏航系统承受的主要载荷;然后,应用GH Bladed软件搭建了目标风电机组的仿真模型,并根据实际工况条件对机组进行了模拟,通过仿真研究了该机组不同运行状态下的偏航载荷特性;然后,利用自主开发的风电机组偏航载荷监测系统,获得了机组实际运行过程中偏航载荷等相关数据;最后,对比分析了相同工况下机组偏航载荷数据与机理仿真模型的结果,并得出了机组偏航系统故障的原因,通过现场检查对诊断结果进行了验证。研究结果表明:在相同的边界条件下,机组运行过程中偏航扭转力矩在频域上叶轮转频处峰值达到504 dB,远高于仿真结果;偏航俯仰弯矩时域波幅达到3568 kNm,与仿真结果相比显著增大,与仿真模型风轮气动不平衡响应一致,由此确定了风轮气动不平衡是造成该风机偏航系统故障的原因。该研究可为解决风电机组偏航系统故障问题提供参考。 展开更多
关键词 风电机组风轮气动不平衡 偏航系统 载荷特性 数据监测 故障分类识别 偏航扭转力矩
在线阅读 下载PDF
基于判别区域引导的多视图困难气道识别
14
作者 吴松霖 张广朝 +1 位作者 姚远 彭博 《计算机应用》 北大核心 2025年第10期3399-3406,共8页
困难气道(DA)是临床手术中关键的术前风险因素,但它的准确识别面临诸多挑战,如数据集规模小、类别严重不平衡和单视图识别能力不足等。针对这些问题,提出多视图DA识别模型——DRG-MV-Net(Discriminative Region Guided Multi-View Net)... 困难气道(DA)是临床手术中关键的术前风险因素,但它的准确识别面临诸多挑战,如数据集规模小、类别严重不平衡和单视图识别能力不足等。针对这些问题,提出多视图DA识别模型——DRG-MV-Net(Discriminative Region Guided Multi-View Net)。在模型的第一阶段,判别区域引导模块(DRGM)借助类激活映射(CAM)自动检测并强调面部视图中的关键判别区域,生成2种具有特定特征的数据增强图像;在模型的第二阶段,使用集成扩张卷积块注意模块(D-CBAM)的ResNet-18骨干网络提取每个视图的特征,再通过多视图交叉融合模块(MCFM)进行多视图特征集成。此外,将Focal Loss与分层混合采样相结合,缓解类别不平衡问题。对所构建的临床数据集的评估结果显示,所提模型实现了77.22%的几何平均准确率(G-Mean)、43.88%的F1分数(F1-Score)、38.73%的马修斯相关系数(MCC)和0.7407的受试者操作特征曲线下面积(AUC)。与近期的DA识别模型MCE-Net(Multi-view Contrastive representation prior and Ensemble classification Network)相比,所提模型的G-Mean、F1-Score和MCC分别提升了2.41、2.34和3.41个百分点;与基线模型ResNet-18相比,分别提升了4.85、6.85和8.25个百分点。以上结果验证了所提模型在小型且不平衡数据集上DA识别的有效性,为解决复杂的DA识别提供了新的见解和方法。 展开更多
关键词 困难气道识别 多视图学习 数据增强 类别数量不平衡 特征融合 注意力机制
在线阅读 下载PDF
基于层次模型的非平衡风速预报订正
15
作者 曹阳 翟俊海 韩玲 《河北大学学报(自然科学版)》 北大核心 2025年第3期317-326,共10页
针对风速预报订正中的数据非平衡问题,提出了一种基于分类/回归层次结构的订正模型.该模型的核心思想是采用分治策略,逐步解决风速数据中的非平衡问题.在分类层中,使用了重加权策略来初步解决数据中的非平衡问题.在回归层中,提出了一种... 针对风速预报订正中的数据非平衡问题,提出了一种基于分类/回归层次结构的订正模型.该模型的核心思想是采用分治策略,逐步解决风速数据中的非平衡问题.在分类层中,使用了重加权策略来初步解决数据中的非平衡问题.在回归层中,提出了一种分组扩展的训练策略,有效纠正了受非平衡影响而被错误分类的样本,从而进一步解决数据非平衡问题.此外,还基于贪心策略设计了一种概率加权方法,目的是对有把握的样本输出更加准确的预测.该模型在山东沿海14个地区的风速数据集上进行了验证,并与相关方法进行了比较.订正后的风速预报整体和极端风速事件的平均绝对误差分别降低了34.4%和69.0%,表明该模型在提高极端风速事件预测能力的同时,也保持了对稳定事件的预测性能. 展开更多
关键词 风速预报订正 层次模型 数据非平衡 极端风速预测
在线阅读 下载PDF
基于CTGAN-CRS与改进卷积神经网络的变压器故障诊断方法
16
作者 阎对丰 刘昌林 +2 位作者 李元超 王纪儒 孔宪光 《高压电器》 北大核心 2025年第6期120-130,137,共12页
为了提升油中溶解气体数据不平衡场景下的电力变压器故障诊断性能,文中提出了一种基于数据增强与特征扩增结合卷积神经网络进行变压器故障诊断的方法。首先,建立一种基于条件式表格生成对抗网络(conditional tabular generative adversa... 为了提升油中溶解气体数据不平衡场景下的电力变压器故障诊断性能,文中提出了一种基于数据增强与特征扩增结合卷积神经网络进行变压器故障诊断的方法。首先,建立一种基于条件式表格生成对抗网络(conditional tabular generative adversarial network,CTGAN)结合级联式拒绝采样(cascade reject sampling,CRS)的数据增强方法,以实现不平衡数据集的高质量均衡化;其次,构建了一种全类型气体比值结合随机森林算法(gas ratios and random forests,GRRF)的特征构建与筛选方法,提升特征维度并丰富特征多样性;最后,建立基于改进二维卷积神经网络(2D improved convolutional neural network,2D-ICNN)的故障诊断模型,并通过实验验证了提出方法的有效性。结果表明,相较于过采样方法和CTGAN,文中提出的CTGAN-CRS能够有效提高生成数据质量,GRRF特征构建方法可以有效提高数据特征丰富度,在此基础上利用改进2D-ICNN模型进一步提高了故障诊断精度。 展开更多
关键词 变压器故障诊断 数据不平衡 条件式表格生成对抗网络 数据增强 卷积神经网络
在线阅读 下载PDF
样本不平衡条件下的甘南地区金矿定量预测方法
17
作者 谢淼 柳炳利 +3 位作者 李芸和 王政尧 曹昌杰 吴艺骁 《地学前缘》 北大核心 2025年第4期108-121,共14页
深度学习模型因其在数据特征提取方面的强大能力而在成矿预测领域得到了广泛应用。然而,基于监督学习的深度学习方法常常面临着训练样本不足和正负样本不均衡的问题,尤其是成矿事件的稀有性易导致模型的稳健性与泛化能力不足。为了解决... 深度学习模型因其在数据特征提取方面的强大能力而在成矿预测领域得到了广泛应用。然而,基于监督学习的深度学习方法常常面临着训练样本不足和正负样本不均衡的问题,尤其是成矿事件的稀有性易导致模型的稳健性与泛化能力不足。为了解决这一问题,本文使用了3种不同的数据增强方法:一是使用滑动窗口的数据增强方法,以“已知正负样本”为中心,采用多次滑动的方式完成增强;二是使用生成式模型,如生成对抗网络(generative adversarial networks,GAN);三是带梯度惩罚的Wasserstein生成对抗网络(Wasserstein generative adversarial network with gradient penalty,WGAN-GP),利用真实样本训练网络,基于训练完备的生成器实现增强。3种不同的数据增强方法能够在样本量扩充的同时,尽可能地保留地质意义。为了验证数据增强的有效性,本文使用真实样本与生成样本之间的FID(Frechet inception distance)值和卷积神经网络(convolutional neural network,CNN)进行评估。结果表明,基于WGAN-GP增强后的数据集在CNN模型具有更强的泛化能力,绘制的甘南地区金矿成矿远景图为未来的矿产资源勘查工作提供了重要的启示。 展开更多
关键词 样本不均衡 数据增强 卷积神经网络 定量预测
在线阅读 下载PDF
对话状态追踪模型的数据增强方法研究
18
作者 刘舒曼 冯洋 《中文信息学报》 北大核心 2025年第4期96-104,共9页
对话状态追踪模型能够支持任务型对话系统识别任务相关的槽位值。然而,由于标注难度大、领域多样化,对话状态追踪模型常面临训练语料稀少和类别难度不均衡等问题。为了解决这些问题,该文提出了使用数据增强的方法。针对类别难度不均衡问... 对话状态追踪模型能够支持任务型对话系统识别任务相关的槽位值。然而,由于标注难度大、领域多样化,对话状态追踪模型常面临训练语料稀少和类别难度不均衡等问题。为了解决这些问题,该文提出了使用数据增强的方法。针对类别难度不均衡问题,该文使用局部噪声强化槽位值的多样性,加强模型学习槽位无关对话结构的能力;针对训练语料稀少问题,该文根据语料中由槽位结构构成的任务逻辑序列,通过采样生成逻辑合法的槽位值序列,增强语料逻辑多样性,增加语料数量。该文方法在数据集上经对比和分析实验,能显著缓解对话状态追踪模型中存在的类别难度不均衡和语料稀少问题。 展开更多
关键词 对话状态追踪 数据增强 类别难度不均衡
在线阅读 下载PDF
基于最优传输与改进型极限学习机的加密流量分类方法
19
作者 邰滢滢 魏苑苑 +1 位作者 周翰逊 王妍 《信息网络安全》 北大核心 2025年第1期148-158,共11页
为了解决加密流量分类任务中的数据不平衡以及模型微调过程中资源与时间消耗高的问题,文章提出一种名为CEFT的微调模型对加密流量进行分类。CEFT的预训练模型为ET-BERT,在此基础上引入最优传输OT和改进型极限学习机I-ELM模块,提升分类... 为了解决加密流量分类任务中的数据不平衡以及模型微调过程中资源与时间消耗高的问题,文章提出一种名为CEFT的微调模型对加密流量进行分类。CEFT的预训练模型为ET-BERT,在此基础上引入最优传输OT和改进型极限学习机I-ELM模块,提升分类性能的同时,达到提高训练效率的目的。CEFT先将加密流量送入ET-BERT模型,实现特征提取,再接入最优传输模块,用以衡量模型预测与真实分布之间的传输成本。CEFT通过权重调整来使其最小化,使得模型在不同类别间的预测更加准确,从而有效应对数据不平衡问题。同时,CEFT通过引入I-ELM模块,实现快速权重更新,进而减少冗长的梯度计算,加速训练过程,解决资源和时间消耗高的问题。实验结果表明,CEFT在ISCX-VPN-Service和ISCX-VPN-App数据集上的准确率分别达到了98.97%和99.70%,且在精度、召回率和F1分数等指标上显著优于现有基准模型。在ISCX-VPN-Service数据集上,CEFT方法将训练时间减少了约33.33%,而在ISCX-VPN-App数据集上减少了约35.37%,显著缩短了训练时间。 展开更多
关键词 CEFT 加密流量分类 数据不平衡 I-ELM 最优传输
在线阅读 下载PDF
融合nmODE的术后肺部并发症预测模型
20
作者 熊立鹏 徐修远 +2 位作者 牛颢 陈楠 章毅 《智能系统学报》 北大核心 2025年第1期198-205,共8页
为了准确预测病人肺部手术后并发症的发生,提出了一种融合神经记忆常微分方程(neural memory ordinary differential equation,nmODE)的并发症预测模型。首先,利用极限梯度提升(extreme gradient boosting,XGBoost)树结构对数据进行编码... 为了准确预测病人肺部手术后并发症的发生,提出了一种融合神经记忆常微分方程(neural memory ordinary differential equation,nmODE)的并发症预测模型。首先,利用极限梯度提升(extreme gradient boosting,XGBoost)树结构对数据进行编码,并提取其特征重要性。然后,使用长短时记忆神经网络对数据的相关特征依赖性进行分析,并提取处理后的特征。最后,利用nmODE的记忆和学习能力,对提取的特征进行深入分析,并得出最终的预测结果。通过实验评估,在肺部术后并发症数据集中,证明了提出模型的效果优于现有模型,同时可以为预测肺部手术后并发症的发生提供更准确的结果。 展开更多
关键词 疾病预测 异构表格数据 神经记忆常微分方程 极限梯度提升 长短时记忆神经网络 合成少数过采样技术 类别不平衡 病人预后
在线阅读 下载PDF
上一页 1 2 10 下一页 到第
使用帮助 返回顶部