期刊文献+
共找到120篇文章
< 1 2 6 >
每页显示 20 50 100
Abnormal behavior detection by causality analysis and sparse reconstruction 被引量:1
1
作者 WANG Jun XIA Li-min 《Journal of Central South University》 SCIE EI CAS CSCD 2017年第12期2842-2852,共11页
A new approach for abnormal behavior detection was proposed using causality analysis and sparse reconstruction. To effectively represent multiple-object behavior, low level visual features and causality features were ... A new approach for abnormal behavior detection was proposed using causality analysis and sparse reconstruction. To effectively represent multiple-object behavior, low level visual features and causality features were adopted. The low level visual features, which included trajectory shape descriptor, speeded up robust features and histograms of optical flow, were used to describe properties of individual behavior, and causality features obtained by causality analysis were introduced to depict the interaction information among a set of objects. In order to cope with feature noisy and uncertainty, a method for multiple-object anomaly detection was presented via a sparse reconstruction. The abnormality of the testing sample was decided by the sparse reconstruction cost from an atomically learned dictionary. Experiment results show the effectiveness of the proposed method in comparison with other state-of-the-art methods on the public databases for abnormal behavior detection. 展开更多
关键词 abnormal behavior detection GRANGER CAUSALITY test CAUSALITY FEATURE SPARSE RECONSTRUCTION
在线阅读 下载PDF
基于视频异常行为检测在粮食仓储行业的应用研究进展
2
作者 陈卫东 丁俊丹 +2 位作者 韩志强 何为 张峰 《粮油食品科技》 北大核心 2025年第3期204-210,共7页
加强有限空间作业安全管理是预防和减少生产安全事故的重要基础,在粮仓封闭大空间内,由于光线不足和空气流通受限,作业过程中存在较大的安全风险,利用仓内监控视频对作业人员的行为进行检测和分析,是确保安全作业的重要技术手段。本文... 加强有限空间作业安全管理是预防和减少生产安全事故的重要基础,在粮仓封闭大空间内,由于光线不足和空气流通受限,作业过程中存在较大的安全风险,利用仓内监控视频对作业人员的行为进行检测和分析,是确保安全作业的重要技术手段。本文总结了基于视频的粮仓作业异常行为检测的数据集建立与预处理方法,阐述了机器学习和深度学习技术在该领域的应用进展,包括异常行为识别、实时预警等方面的技术创新与实践应用。同时,汇总了该领域研究成果及存在的问题,如数据集不完善、模型准确性不足等,对未来研究方向进行了展望。 展开更多
关键词 粮食仓储 视频 异常行为检测 深度学习
在线阅读 下载PDF
基于知识蒸馏的考场异常行为识别
3
作者 姚捃 郭志林 《计算机应用与软件》 北大核心 2025年第3期156-161,共6页
在实际监控的边缘设备中使用GAN或者3DCNN等网络很难实现实时的、相对准确的监控任务。提出一种基于知识蒸馏的考场异常行为识别算法。相对于以提取空间、时序特征并进行融合为主流思想的异常行为识别,利用视频帧进行目标检测和知识蒸... 在实际监控的边缘设备中使用GAN或者3DCNN等网络很难实现实时的、相对准确的监控任务。提出一种基于知识蒸馏的考场异常行为识别算法。相对于以提取空间、时序特征并进行融合为主流思想的异常行为识别,利用视频帧进行目标检测和知识蒸馏的异常行为识别方法更加快速准确。算法借助知识蒸馏策略使用预训练的teacher网络监督student网络学习,进行正常行为的推理并检测异常行为。结果表明该算法达到了主流数据集的中上水平,并在考场环境具有良好的高效性与准确性。 展开更多
关键词 目标检测 注意力机制 知识蒸馏 异常行为识别
在线阅读 下载PDF
伪异常引导的融合注意力和记忆增强的鱼群异常行为检测
4
作者 袁红春 肖智豪 《湖南农业大学学报(自然科学版)》 北大核心 2025年第1期123-130,共8页
现有的鱼群异常行为检测方法无法有效提取高级语义信息、特征学习不足,且缺乏对异常样本的学习和提取关键特征的能力,无法满足现有的大规模水产养殖需求。笔者结合深度学习技术,提出了一种伪异常引导的融合注意力和记忆增强的鱼群异常... 现有的鱼群异常行为检测方法无法有效提取高级语义信息、特征学习不足,且缺乏对异常样本的学习和提取关键特征的能力,无法满足现有的大规模水产养殖需求。笔者结合深度学习技术,提出了一种伪异常引导的融合注意力和记忆增强的鱼群异常行为检测方法:通过在视频序列中随机选择跳跃的帧构建伪异常合成器生成伪异常样本,增强对异常样本的感知能力;提出选择性内核频率通道注意力(SKFca)机制,在选择性内核(SK)注意力的基础上引入频域信息,以捕捉更丰富的输入信息;通过瓶颈注意力(BAM)机制在通道和空间维度上抑制不相关的背景特征,突出前景目标特征;在2种注意力模块后面添加记忆增强模块,将异常样本的编码特征替换为正常样本的编码特征,扩大异常样本输出与输入的重构误差;将记忆增强后的通道和空间维度上的关键特征和频域特征融合,以全面提取高级语义信息。结果表明,本研究所提方法在2种自制的鱼类数据集上检测效果都很好,曲线下面积(AUC)分别达0.953和0.957,且能实现对异常的精确定位。 展开更多
关键词 鱼群异常行为检测 高级语义信息 深度学习 伪异常引导 注意力机制 记忆增强
在线阅读 下载PDF
DMU-YOLO:机载视觉的多类异常行为检测算法 被引量:1
5
作者 韩佰轩 彭月平 +1 位作者 郝鹤翔 叶泽聪 《计算机工程与应用》 北大核心 2025年第7期128-140,共13页
针对无人机航拍图像的检测算法中存在小目标识别精度低和特征提取能力不足的问题,设计了一种改进YOLOv9的多类别异常行为检测算法。该算法在模型头部加入改进的维度感知选择性集成模块,进行了有效的通道分割和融合策略,并在主干部分添... 针对无人机航拍图像的检测算法中存在小目标识别精度低和特征提取能力不足的问题,设计了一种改进YOLOv9的多类别异常行为检测算法。该算法在模型头部加入改进的维度感知选择性集成模块,进行了有效的通道分割和融合策略,并在主干部分添加多维协同注意力机制,同时引入最大特征池化,强化了针对自建数据集的特征提取能力,而后将通用倒置残差模块与原网络的特征提取模块融合,形成了UIB-RepELAN特征提取模块,有效提升了模型检测的鲁棒性,针对难易样本不均匀分布导致的数据集长尾分布等问题,采用数据增强方法对异常类别样本进行扩充,并使用Focaler-IoU对损失函数进行重构,提高模型泛化能力。结果表明,相较于基线模型,在Vis-Drone2019数据集上的检测精度由0.046提高到0.048;针对自建数据集的检测精度由0.909提高到0.960,平均检测用时为28 ms,满足了高效率高精度的检测要求。 展开更多
关键词 YOLOv9算法 多类异常行为检测 特征提取 无人机航拍数据集 深度学习
在线阅读 下载PDF
视觉与AIS融合的桥区水域船舶自动监测方法
6
作者 杜子俊 贺益雄 +3 位作者 于德清 赵兴亚 张锐 黄立文 《中国航海》 北大核心 2025年第1期34-42,共9页
为保障桥区通航安全,提出一种视觉与船舶自动识别系统(Automatic Identification System,AIS)融合的船舶自动监测方法。基于YOLOv5(You Only Look Once version 5)目标检测算法和Canny算法提取船舶图像轮廓信息,构建桥区水域目标距离、... 为保障桥区通航安全,提出一种视觉与船舶自动识别系统(Automatic Identification System,AIS)融合的船舶自动监测方法。基于YOLOv5(You Only Look Once version 5)目标检测算法和Canny算法提取船舶图像轮廓信息,构建桥区水域目标距离、方位和高度视觉测量模型与方法,实现船舶三维定位。利用融合视觉与AIS的船舶航行态势数据建立异常行为检测模型,自动识别、监测桥区水域危险船舶。试验结果表明:在单、多船的情况下视觉与AIS数据关联准确率分别达到98.45%、91.29%;能有效监测桥区船舶的运动状态。本研究可为保障船舶和桥梁的安全提供有效方法。 展开更多
关键词 船舶自动监测方法 目标检测 数据融合 异常行为检测
在线阅读 下载PDF
Augmenter:基于数据源图的事件级别入侵检测
7
作者 孙鸿斌 王苏 +3 位作者 王之梁 蒋哲宇 杨家海 张辉 《计算机科学》 北大核心 2025年第2期344-352,共9页
近年来,高级可持续威胁(APT)攻击频发。数据源图包含丰富的上下文信息,反映了进程的执行过程,具有检测APT攻击的潜力,因此基于数据源图的入侵检测系统(PIDS)备受关注。PIDS通过捕获系统日志生成数据源图来识别恶意行为。PIDS主要面临3... 近年来,高级可持续威胁(APT)攻击频发。数据源图包含丰富的上下文信息,反映了进程的执行过程,具有检测APT攻击的潜力,因此基于数据源图的入侵检测系统(PIDS)备受关注。PIDS通过捕获系统日志生成数据源图来识别恶意行为。PIDS主要面临3个挑战:高效性、通用性和实时性,特别是高效性。目前的PIDS在检测到异常行为时,一个异常节点或一张异常图就会产生成千上万条告警,其中会包含大量的误报,给安全人员带来不便。为此,提出了基于数据源图的入侵检测系统Augmenter,同时解决上述3个挑战。Augmenter利用节点的信息字段对进程进行社区划分,有效学习不同进程的行为。此外,Augmenter提出时间窗口策略实现子图划分,并采用了图互信息最大化的无监督特征提取方法提取节点的增量特征,通过增量特征提取来放大异常行为,同时实现异常行为与正常行为的划分。最后,Augmenter依据进程的类型训练多个聚类模型来实现事件级别的检测,通过检测到事件级别的异常能够更精准地定位攻击行为。在DARPA数据集上对Augmenter进行评估,通过衡量检测阶段的运行效率,验证了Augmenter的实时性。在检测能力方面,与最新工作Kairos和ThreaTrace相比,所提方法的精确率和召回率分别为0.83和0.97,Kairos为0.17和0.80,ThreaTrace为0.29和0.76,Augmenter具有更高的精确率和检测性能。 展开更多
关键词 高级可持续威胁 数据源图 入侵检测 增量特征 异常行为
在线阅读 下载PDF
基于深度学习的城际高铁轨道交通站台异常检测研究
8
作者 毛良 邱启盛 +3 位作者 刘瑞康 段梦飞 董佳勋 刘伟铭 《铁道标准设计》 北大核心 2025年第6期196-204,226,共10页
城际铁路站台门与列车间的风险空间具有超长、超大、视线死角多和环境超复杂等特点,更容易出现遗留物品、乘客异常行为及乘客越过限界区等影响列车运营的安全事件。现有的异常检测方法存在检测盲区大、误检率高及无法检测异常等问题,不... 城际铁路站台门与列车间的风险空间具有超长、超大、视线死角多和环境超复杂等特点,更容易出现遗留物品、乘客异常行为及乘客越过限界区等影响列车运营的安全事件。现有的异常检测方法存在检测盲区大、误检率高及无法检测异常等问题,不适合城际铁路站台门与站台边界距离超过1.2 m或更大风险空间的异常检测任务。为此,在分析城际铁路风险空间特点的基础上,研究顶装式视觉传感器相比现有的其他检测方式在异常检测任务中的优势和潜力。其次,研究城际铁路风险空间异常检测的具体需求并分析深度学习方法在该任务中所具备的高适应能力。最后,介绍几种用于城际铁路风险空间异常物体检测及乘客异常行为检测的算法,并与现有的技术进行比较。在站台异物检测任务中,提出一种基于图像修复的城际铁路异物检测网络,利用图像修复自动编码器,全局重建误差和局部异常信息增强模块,突出重建的无异常图片和输入的异常图片之间的差异,算法检测精度达到99.3%。在异常行为检测中,提出一种基于骨架的识别框架,通过姿态估计网络获得个人骨架数据,并结合图卷积神经网络对骨架序列进行分类,对跌倒、蹲下、弯腰和行走这4种行为的平均识别率达到91.7%。 展开更多
关键词 高速铁路 城际轨道交通 深度学习 异物检测 异常行为检测
在线阅读 下载PDF
无人驾驶环境下的站台门与列车间安全全信息感知系统
9
作者 王珩 廖先哲 +3 位作者 刘伟铭 戴愿 杨代鑫 刘一霄 《铁道标准设计》 北大核心 2025年第1期198-205,213,共9页
地铁全自动无人驾驶系统完全排除了司机和乘务人员,通过地面控制中心基于实时感知信息对列车和相关设施进行统一最优控制的自动运行系统。首先,对地铁全自动运行系统进行定义,并分析地铁站台门和轨行区侧的风险空间特点,提出在无人驾驶... 地铁全自动无人驾驶系统完全排除了司机和乘务人员,通过地面控制中心基于实时感知信息对列车和相关设施进行统一最优控制的自动运行系统。首先,对地铁全自动运行系统进行定义,并分析地铁站台门和轨行区侧的风险空间特点,提出在无人驾驶环境下对站台和轨行区侧进行安全信息感知的需求。其次,对现有信息感知技术进行评估,分析其优缺点。最后,提出一种基于顶装机器视觉的全时域全信息感知系统,能够实现列车进出站时客流量及异常行为的检测,站台门关闭后列车与站台门之间异物及异物种类的检测,以及列车不在站时站台门及轨行区异物的检测。该系统完全覆盖乘降作业监督区域,能够提供1920×1080分辨率或更高的实时图像,最小可检测的风险事件尺寸为3 cm×3 cm。这些技术实现了站台门与列车间区域的全时空安全信息感知,避免了轨道交通系统功能碎片化,能够全面支撑未来智慧轨道交通信息发展的需求。 展开更多
关键词 无人驾驶地铁 安全信息感知 机器视觉 客流量检测 异常行为检测 异物检测
在线阅读 下载PDF
基于长短周期特征的用户异常行为检测
10
作者 王世谦 白宏坤 +2 位作者 贾一博 卜飞飞 黄勇 《郑州大学学报(理学版)》 北大核心 2025年第6期65-73,82,共10页
随着能源大数据平台用户数量与类型的不断增多,其面临的内部安全威胁也愈加突出。用户异常行为检测是抵御内部安全威胁的一种有效手段。当前主流的检测方法没有考虑同一平台内不同类型用户的行为差异以及访问行为的长短周期特征,检测性... 随着能源大数据平台用户数量与类型的不断增多,其面临的内部安全威胁也愈加突出。用户异常行为检测是抵御内部安全威胁的一种有效手段。当前主流的检测方法没有考虑同一平台内不同类型用户的行为差异以及访问行为的长短周期特征,检测性能较低。为此,利用不同类别用户的行为特点,提出长短期孤立森林模型和多时间窗口并列门循环神经网络,分别构建用户长、短周期内的访问行为特征,最后融合两种模型的结果构建一个基于用户类别的异常行为检测框架。结合某省能源大数据平台系统对所提框架进行了验证,实验结果表明,所提框架能够有效刻画平台用户的访问规律,并具有较高的异常行为识别准确率与异常处理效率。 展开更多
关键词 用户行为 异常行为检测 长周期特征 短周期特征
在线阅读 下载PDF
基于时间-通道拓扑解耦图卷积的异常行为检测 被引量:1
11
作者 张家波 唐上松 何阿娟 《信号处理》 CSCD 北大核心 2024年第12期2193-2205,共13页
随着姿态估计技术的发展,使用人体骨骼数据而非传统像素数据进行异常行为检测成为可能,这种异常检测方法克服了传统基于像素特征的方法中光照、视角和背景噪声等因素带来的问题。然而,现有的图卷积网络(Graph Convolutional Network,GCN... 随着姿态估计技术的发展,使用人体骨骼数据而非传统像素数据进行异常行为检测成为可能,这种异常检测方法克服了传统基于像素特征的方法中光照、视角和背景噪声等因素带来的问题。然而,现有的图卷积网络(Graph Convolutional Network,GCN)在处理人体骨骼数据时,通常使用固定的邻接矩阵进行信息聚合,这限制了模型在提取行为特征时的灵活性。为了解决上述问题,本文提出了基于时间-通道拓扑解耦的图卷积网络(TimeChannel Topology Decoupling Graph Convolution Network,TCTD-GCN)。TCTD-GCN分别在时间和通道维度上采用拓扑学习的方式来学习自适应的邻接矩阵,从而实现时间和通道的有效解耦。学习得到的自适应邻接矩阵能更准确地聚合特征,促进对人体行为的准确表示。此外,文章提出一种虚拟异常引导的自监督异常检测(Virtual Anomaly-guided Self-supervised Anomaly Detection,VASAD)策略来提高检测精度。VASAD将异常检测问题视作一个多分类问题,通过将正常行为的不同类别视为“虚拟异常”来辅助模型训练,从而在测试阶段更准确地区分正常与异常行为。这种策略增强了模型对正常行为内在差异的学习,提高了对真实异常的判别能力。最后,本文模型在ShanghaiTech Campus、CUHK Avenue和USCD Ped2三个主流数据集上进行实验,帧级曲线下面积(area under the curve,AUC)分别达到76.6%、87.7%和95.3%,在ShanghaiTech Campus和CUHK Avenue数据集上相对主流模型有明显提升,验证了模型的有效性和优越性。 展开更多
关键词 人体骨骼 异常行为检测 解耦图卷积 自适应邻接矩阵 多类别异常检测
在线阅读 下载PDF
骨架引导的多模态视频异常行为检测方法 被引量:3
12
作者 付荣华 刘成明 +2 位作者 刘合星 高宇飞 石磊 《郑州大学学报(理学版)》 CAS 北大核心 2024年第1期16-24,共9页
视频异常行为检测是智能视频监控分析的一项重要且具有挑战性的任务,旨在自动发现异常事件。针对只采用单骨架模态导致部分相似运动模式的行为难以区分和缺乏时间全局信息的问题,提出骨架引导的多模态异常行为检测方法。为了充分利用RG... 视频异常行为检测是智能视频监控分析的一项重要且具有挑战性的任务,旨在自动发现异常事件。针对只采用单骨架模态导致部分相似运动模式的行为难以区分和缺乏时间全局信息的问题,提出骨架引导的多模态异常行为检测方法。为了充分利用RGB视频模态和骨架模态的优势进行相似行为下的异常行为检测,将从骨架模态中提取的动作行为特征作为引导,使用新的空间嵌入来加强RGB视频和骨架姿态之间的对应关系。同时使用时间自注意力提取相同节点的帧间关系,以捕获时间的全局信息,有效提取具有区分性的异常行为特征。在两个大型公开标准数据集上的实验结果表明所提方法能够有效加强骨架引导的多模态特征在空间和模态上的对应关系,并捕获时空图卷积缺乏的时间全局信息,使运动模式相似的异常行为实现更准确检测。 展开更多
关键词 视频异常行为检测 骨架 多模态融合 时空自注意力增强图卷积 空间嵌入
在线阅读 下载PDF
视频异常行为检测综述 被引量:1
13
作者 吴沛宸 袁立宁 +1 位作者 郭放 刘钊 《计算机科学与探索》 CSCD 北大核心 2024年第12期3100-3125,共26页
视频异常行为检测作为计算机视觉的研究热点,通过提取视频内容时间和空间特征,判断视频中是否存在异常事件和事件种类,定位异常发生的区域和时间。以有监督/无监督学习为线索,对现有视频异常行为检测方法进行系统梳理和归纳。在有监督... 视频异常行为检测作为计算机视觉的研究热点,通过提取视频内容时间和空间特征,判断视频中是否存在异常事件和事件种类,定位异常发生的区域和时间。以有监督/无监督学习为线索,对现有视频异常行为检测方法进行系统梳理和归纳。在有监督类方法中,细分为基于偏差均值计算方法和基于多模态方法;在无监督类方法中,主要总结了基于完全无监督的多种方法。从当前主流建模思路出发对偏差均值计算方法系统性说明,按照不同模态特征的使用及其处理方式对多模态方法进行阐述和总结,根据两种模型训练方式介绍完全无监督方法。对比了不同模型的网络架构,并归纳总结出各类异常行为检测模型的测试数据集、使用场景、优势和局限性。通过基准数据集以帧级标准和像素级标准等常用评价标准进行了模型比较和性能评估,同时通过不同方法的性能表现进行类内对比,并对结果进行分析总结。通过虚拟合成数据集、多模态大模型和轻量级模型等五个方向探究了视频异常行为检测的发展趋势。 展开更多
关键词 异常行为检测 深度学习 完全无监督 多模态特征
在线阅读 下载PDF
拓扑信息引导的视频异常行为检测方法 被引量:1
14
作者 陈明一 李洪均 《计算机工程与应用》 CSCD 北大核心 2024年第16期228-235,共8页
在视频异常检测任务中,良好的特征提取能力在多帧预测方法中十分重要。然而当面对复杂的环境时,传统的基于空间特征的提取方法往往在多层卷积的过程中忽略了底层特征之间的全局依赖关系。为了更好地进行特征提取,提出一种依托拓扑强相... 在视频异常检测任务中,良好的特征提取能力在多帧预测方法中十分重要。然而当面对复杂的环境时,传统的基于空间特征的提取方法往往在多层卷积的过程中忽略了底层特征之间的全局依赖关系。为了更好地进行特征提取,提出一种依托拓扑强相关信息引导的视频异常检测方法。该方法针对底层特征序列进行全局相关性信息的提取,并以此初步增强特征中强关联的信息。将底层特征作为节点,裁剪后的相关性信息作为邻里矩阵,构建关键特征之间的拓扑结构关系图,有效地利用了关键特征的拓扑结构信息。将初步增强的特征与拓扑结构特征进行特征融合,帮助模型更深入更全面地筛选关键特征,提高了特征表达能力。该方法在Ped2、Avenue和ShanghaiTech三个公开数据集上取得了良好的视频帧预测效果,提高了模型的检测精度。 展开更多
关键词 视频异常行为检测 相关性信息提取 拓扑关系网络构建 拓扑特征提取
在线阅读 下载PDF
面向工业互联网设备的异常行为关联分析攻击溯源技术研究 被引量:2
15
作者 林晨 刚占慧 +3 位作者 韦彦 郭娴 曲海阔 王冲华 《信息安全研究》 CSCD 北大核心 2024年第6期532-538,共7页
针对工业互联网场景下工控网络侧、设备侧异常行为分析溯源技术攻击过程机理分析不清、跳转流程不明确等问题,提出了一种基于异常行为关联分析映射的攻击溯源检测方法.该方法基于异常行为序列相似度比对、异常行为序列与攻击阶段映射分... 针对工业互联网场景下工控网络侧、设备侧异常行为分析溯源技术攻击过程机理分析不清、跳转流程不明确等问题,提出了一种基于异常行为关联分析映射的攻击溯源检测方法.该方法基于异常行为序列相似度比对、异常行为序列与攻击阶段映射分析,将设备攻击映射情况与网络异常行为进行关联分析,串联不同设备之间的攻击关联子图构建完整攻击链条进行精准溯源.最终,通过构建工业智能设备仿真测试环境,实现常见工业设备攻击行为的重放复现,验证了所提出的攻击检测溯源方法的有效性. 展开更多
关键词 工业互联网 攻击溯源 攻击检测 异常行为 工控安全系统
在线阅读 下载PDF
基于改进光流法的视频监控中人群异常行为检测算法 被引量:5
16
作者 铁富珍 《现代电子技术》 北大核心 2024年第7期45-48,共4页
危害社会公共安全的事件频发,研究视频监控中人群异常行为对于恢复治安秩序和保障公众安全有着重要意义。由于视频监控涉及多种多样的场景,复杂环境影响了人群异常行为的准确检测。因此,为提升视频监控中人群异常行为的检测效果,提出基... 危害社会公共安全的事件频发,研究视频监控中人群异常行为对于恢复治安秩序和保障公众安全有着重要意义。由于视频监控涉及多种多样的场景,复杂环境影响了人群异常行为的准确检测。因此,为提升视频监控中人群异常行为的检测效果,提出基于改进光流法的视频监控中人群异常行为检测算法。利用改进单高斯模型在视频监控中人群视频帧内提取角点作为特征点;基于改进光流法计算特征点的运动速度与方向,提取有效特征点,得到人群运动目标图像;通过计算人群运动目标图像内光流点的方向熵、幅值熵与平均速度的乘积,确定运动混乱度;对比分析运动混乱度与设置阈值,完成人群异常行为检测。实验结果表明,该算法可有效提取人群视频帧内的角点和运动目标图像,准确检测人群异常行为,具有较好的视频监控中人群异常行为检测效果。 展开更多
关键词 改进光流法 视频监控 人群异常行为检测 单高斯模型 特征点 方向熵 幅值熵 运动混乱度
在线阅读 下载PDF
用户用电负荷变化的异常检测与识别 被引量:2
17
作者 李晗轲 李璟 +3 位作者 王颖 邹国平 陈倩楠 蔡慧 《现代电子技术》 北大核心 2024年第10期1-5,共5页
在智能电网时代,大部分用电异常行为都会伴随用电负荷的变化,研究用户用电行为对于电力系统的运行和管理都至关重要。为此,提出一种直接利用负荷数据进行计算,通过计算特征用电负荷曲线与日用电负荷曲线之间的相关度来判断用户是否存在... 在智能电网时代,大部分用电异常行为都会伴随用电负荷的变化,研究用户用电行为对于电力系统的运行和管理都至关重要。为此,提出一种直接利用负荷数据进行计算,通过计算特征用电负荷曲线与日用电负荷曲线之间的相关度来判断用户是否存在异常用电行为的方法。在相关度计算过程中,将欧氏距离与皮尔逊相关系数相结合,以更准确地判断用户的用电负荷是否发生重大变化。此外,为提高判断的准确性和灵活性,采用自适应阈值策略对500组数据进行实验研究。相关度计算的结果表明,其中122组被判断为负荷变化过大,99组数据存在负荷异常事件,该方法的判断准确率达到了81.1%。 展开更多
关键词 异常用电行为 负荷检测 日用电负荷曲线 特征负荷曲线 相关度 皮尔逊相关系数 欧氏距离 阈值判断
在线阅读 下载PDF
基于seq2seq和SVM双层融合的非侵入式用户异常行为检测 被引量:1
18
作者 江友华 叶梦豆 +1 位作者 赵乐 杨兴武 《计算机应用与软件》 北大核心 2024年第9期97-105,共9页
以非侵入式负荷分解为基础,对用户异常用电行为进行研究。采用Kmeans聚类算法提取负荷状态特征;采用深度学习算法中的序列到序列翻译(sequence to sequence, seq2seq)模型,将电力用户用电总数据分解成单个电器的功耗数据;结合SVM算法对... 以非侵入式负荷分解为基础,对用户异常用电行为进行研究。采用Kmeans聚类算法提取负荷状态特征;采用深度学习算法中的序列到序列翻译(sequence to sequence, seq2seq)模型,将电力用户用电总数据分解成单个电器的功耗数据;结合SVM算法对分解后多种家用电器用电数据进行异常检测。在UKDALE数据集实验结果表明,该模型不仅能提高分解准确度、降低分解误差,而且多个电器数据结合分析实现了用户异常行为检测。 展开更多
关键词 非侵入式负荷分解 Kmeans聚类 seq2seq模型 SVM算法 异常行为检测
在线阅读 下载PDF
基于多尺度特征记忆增强的异常行为检测算法
19
作者 向万 陈绪君 +1 位作者 郑有凯 房可 《计算机工程与设计》 北大核心 2024年第9期2634-2640,共7页
针对传统视频异常行为检测任务中存在目标对象空间尺寸变化差异大和对异常行为预测的泛化能力过强等问题,提出一种基于多尺度特征记忆增强的视频异常行为检测改进方法。通过多分支结构的空洞卷积组成的多尺度特征模块在高级特征图上提... 针对传统视频异常行为检测任务中存在目标对象空间尺寸变化差异大和对异常行为预测的泛化能力过强等问题,提出一种基于多尺度特征记忆增强的视频异常行为检测改进方法。通过多分支结构的空洞卷积组成的多尺度特征模块在高级特征图上提取不同尺度的特征信息,级联记忆增强模块存储正常行为特征以削弱泛化能力。在多尺度特征模块和记忆增强模块的协同工作下能够有效收集和记忆正常行为场景中的多尺度特征信息。以实验分析验证该方法的有效性。 展开更多
关键词 异常行为检测 多尺度特征 多分枝结构 空洞卷积 泛化能力 记忆增强 协同工作
在线阅读 下载PDF
改进重建和预测网络的人体异常行为检测方法
20
作者 张红民 庄旭 郑敬添 《计算机工程与应用》 CSCD 北大核心 2024年第17期216-223,共8页
在人体异常行为检测中,为了能够更加充分地利用动作和时空特征信息,提出了一种基于重建和预测网络的人体异常行为检测方法。该方法中的网络结构由重建子网络和视频预测子网络组成,其中重建子网络采用自编码器结构,以连续的视频帧作为输... 在人体异常行为检测中,为了能够更加充分地利用动作和时空特征信息,提出了一种基于重建和预测网络的人体异常行为检测方法。该方法中的网络结构由重建子网络和视频预测子网络组成,其中重建子网络采用自编码器结构,以连续的视频帧作为输入来对下一帧进行重建;预测子网络采用基于3D卷积的编码器、解码器结构作为网络主干,通过输入一连串视频帧图片对后续视频帧进行预测。此外,为了能让重建子网络更好地关注人体行为的动作特征,采用詹森-香农散度(JSD)来计算重建帧与原始帧之间的差异,同时在预测子网络中添加时空一致性的正则化约束。UCSDped2、Avenue和ShanghaiTech三个数据集上的实验结果表明,该方法相比于其他的视频人体异常行为检测方法在AUC指标上有更好的表现,在UCSDped2、Avenue和ShanghaiTech数据集中分别达到了97.3%、91.1%和82.6%。 展开更多
关键词 异常行为检测 自编码器 3D卷积 时空一致性
在线阅读 下载PDF
上一页 1 2 6 下一页 到第
使用帮助 返回顶部