期刊文献+
共找到12篇文章
< 1 >
每页显示 20 50 100
基于空间权重和层间相关性的可解释浅层类激活映射算法研究
1
作者 程艳 何慧娟 +2 位作者 陈彦滢 姚楠楠 林国波 《计算机科学》 北大核心 2025年第S1期498-504,共7页
卷积神经网络在计算机视觉领域具有重要作用,然而其黑盒特性使人们理解其决策理由变得困难,严重阻碍了其在某些安全领域的应用。传统的类激活映射(Class Activation Mapping,CAM)算法通常受限于深层神经元的可解释性,对浅层神经元的解... 卷积神经网络在计算机视觉领域具有重要作用,然而其黑盒特性使人们理解其决策理由变得困难,严重阻碍了其在某些安全领域的应用。传统的类激活映射(Class Activation Mapping,CAM)算法通常受限于深层神经元的可解释性,对浅层神经元的解释能力较弱且存在较多噪声。为了应对这一挑战,提出一种可解释浅层的类激活映射算法,并生成细粒度的解释。该算法基于相关性传播理论,考虑相邻层之间的相关性,得到层间相关性权重,并将应用了空间权重的特征图作为掩码,与层间相关性权重相乘,从而实现浅层解释。实验结果表明,所提算法与解释浅层最优的LayerCAM相比,卷积神经网络每层生成的类激活图的删除插入测试综合评分在ILSVRC2012 val数据集上最高提高了2.73,最低提高了0.24,在CUB-200-2011数据集上最高提高了1.31,最低提高了0.38。 展开更多
关键词 类激活映射算法 卷积神经网络 浅层神经元 空间权重 层间相关性
在线阅读 下载PDF
基于卷积神经网络编码加扰类型识别
2
作者 卫翔 刘星璇 谭继远 《火力与指挥控制》 CSCD 北大核心 2024年第11期118-127,共10页
针对线性分组码加扰和卷积码加扰类型的识别问题,提出了一种利用相关特征和浅层神经网络相结合的加扰类型识别方法。推导了加扰序列码元的互相关特征,引入了有偏自相关函数,两者结合作为输入的相关特征;在分析加扰序列相关性的基础上,... 针对线性分组码加扰和卷积码加扰类型的识别问题,提出了一种利用相关特征和浅层神经网络相结合的加扰类型识别方法。推导了加扰序列码元的互相关特征,引入了有偏自相关函数,两者结合作为输入的相关特征;在分析加扰序列相关性的基础上,构建了实时性较强的浅层神经网络模型;将加扰数据集输入到网络模型中,完成了网络的训练和识别测试。仿真结果表明,相比于基于多重分型谱的传统算法,所提算法能识别多种加扰类型,同时所提算法的抗误码性能更强,为进一步进行扰码参数识别奠定了基础。 展开更多
关键词 线性分组码加扰 卷积码加扰 码元互相关 有偏自相关函数 浅层神经网络
在线阅读 下载PDF
循环相关熵和一维浅卷积神经网络轴承故障诊断 被引量:1
3
作者 李辉 徐伟烝 《机械科学与技术》 CSCD 北大核心 2024年第4期600-610,共11页
针对传统二维深度卷积神经网络结构复杂、易产生过拟合和难以有效处理低信噪比信号的问题,提出了一种基于循环相关熵和一维浅卷积神经网络的故障诊断-CCe-1D SCNN方法。该方法综合利用了一维浅卷积神经网络结构简单、计算复杂度低和循... 针对传统二维深度卷积神经网络结构复杂、易产生过拟合和难以有效处理低信噪比信号的问题,提出了一种基于循环相关熵和一维浅卷积神经网络的故障诊断-CCe-1D SCNN方法。该方法综合利用了一维浅卷积神经网络结构简单、计算复杂度低和循环相关熵能在低信噪比环境下有效提取故障特征的优点。首先,计算轴承故障振动信号的循环相关熵函数、循环相关熵谱密度函数和广义循环平稳度;其次,将一维归一化的广义循环平稳度作为一维浅卷积神经网络的输入层,通过一维浅卷积神经网络自动实现故障特征提取和模式分类;最后,将CCe-1D SCNN方法应用于电机轴承故障特征提取和分类,实验结果表明:CCe-1D SCNN方法在低噪声比情况下仍能保持很高的模式识别正确率,为一种自动故障特征提取和模式识别的有效方法。 展开更多
关键词 循环相关熵 一维浅卷积神经网络 深度学习 循环平稳信号 故障诊断
在线阅读 下载PDF
基于Faster R CNN的浅口高跟鞋款式识别 被引量:4
4
作者 张飚雪 刘成霞 《丝绸》 CAS CSCD 北大核心 2021年第1期79-84,共6页
目前网购平台的搜索对象仍以文字为主,致使搜索效率低下。文章以广受女性欢迎的浅口高跟鞋为例,对利用图片进行款式自动识别的技术进行探索。以网购平台上收集的3类浅口高跟鞋(粗跟、细跟、坡跟)共900张图片(每款随机抽取200张作为训练... 目前网购平台的搜索对象仍以文字为主,致使搜索效率低下。文章以广受女性欢迎的浅口高跟鞋为例,对利用图片进行款式自动识别的技术进行探索。以网购平台上收集的3类浅口高跟鞋(粗跟、细跟、坡跟)共900张图片(每款随机抽取200张作为训练集,剩余100张作为测试集)为研究对象,然后利用深度学习中的Faster R CNN检测模型对浅口高跟鞋款式进行训练和测试识别。结果表明:无论以鞋跟为目标区域,还是以整只鞋为检测区域,利用该模型都能对浅口高跟鞋图像实现良好的款式识别,准确率可达94%以上,且不用经过人为特征提取,方便可行;Faster R CNN检测模型的总体精度和检测速度比R CNN、SPP-Net、FAST R CNN更优。 展开更多
关键词 深度学习 款式识别 浅口高跟鞋 Faster R CNN 卷积神经网络
在线阅读 下载PDF
基于浅层Inception-MobileNet旋转机械故障诊断 被引量:4
5
作者 孙国栋 杨雄 +1 位作者 黄得龙 高媛 《噪声与振动控制》 CSCD 北大核心 2022年第5期108-115,共8页
针对现有的旋转机械故障诊断算法存在着时频表示模糊、特征提取困难,从而导致故障诊断效率和精度较低的问题,提出一种基于浅层Inception-MobileNet的旋转机械故障诊断模型。该模型通过拼接法将原始振动信号转换为二维图像,然后采用多尺... 针对现有的旋转机械故障诊断算法存在着时频表示模糊、特征提取困难,从而导致故障诊断效率和精度较低的问题,提出一种基于浅层Inception-MobileNet的旋转机械故障诊断模型。该模型通过拼接法将原始振动信号转换为二维图像,然后采用多尺度卷积核提取不同分辨率的特征图,并结合深度可分离卷积实现特征学习与分类。该网络在CWRU数据集和MFPT数据集上分别实现了十种故障分类和三种故障分类,分类精度为99.5%和95.78%。与传统的网络进行比较,该网络可提高特征提取能力,并且在相同数据集上该网络实现的故障识别精度最高。 展开更多
关键词 故障诊断 旋转机械 浅层Inception-MobileNet 卷积神经网络
在线阅读 下载PDF
采用多通道浅层CNN构建的多降噪器最优组合模型 被引量:1
6
作者 徐少平 林珍玉 +2 位作者 陈孝国 李芬 杨晓辉 《自动化学报》 EI CAS CSCD 北大核心 2022年第11期2797-2811,共15页
现有的一致性神经网络(Consensus neural network,CsNet)利用凸优化和神经网络技术将多个降噪算法(降噪器)输出的图像进行加权组合(融合),以获得更好的降噪效果,但该优化模型在降噪效果和执行效率方面仍有较大改进空间.为此,提出一种基... 现有的一致性神经网络(Consensus neural network,CsNet)利用凸优化和神经网络技术将多个降噪算法(降噪器)输出的图像进行加权组合(融合),以获得更好的降噪效果,但该优化模型在降噪效果和执行效率方面仍有较大改进空间.为此,提出一种基于轻量型多通道浅层卷积神经网络(Multi-channel shallow convolutional neural network,MSCNN)构建的多降噪器最优组合(Optimal combination of image denoisers,OCID)模型.该模型采用多通道输入结构直接接收由多个降噪器输出的降噪图像,并利用残差学习技术合并完成图像融合和图像质量提升两项任务.具体使用时,对于给定的一张噪声图像,先用多个降噪器对其降噪,并将降噪后图像输入OCID模型获得残差图像,然后将多个降噪图像的均值图像与残差图像相减,所得到图像作为优化组合后的降噪图像.实验结果表明,与CsNet组合模型相比,网络结构更为简单的OCID模型以更小的计算代价获得了图像质量更高的降噪图像. 展开更多
关键词 多降噪器最优组合 一致性神经网络 多通道浅层卷积神经网络 降噪效果提升 执行效率
在线阅读 下载PDF
采用两阶段混合策略实现的低照度图像增强算法 被引量:5
7
作者 徐少平 陈孝国 +2 位作者 李芬 林珍玉 陈晓军 《电子学报》 EI CAS CSCD 北大核心 2021年第11期2166-2170,共5页
在深入分析现有各主流低照度图像增强(Low Light Image Enhancement,LLIE)算法的基础上,提出了一种采用两阶段混合策略实现的低照度图像增强(Hybrid LLIE,HLLIE)算法.具体地,在第一阶段,对于给定的低照度图像,利用互补效果较好的Fu和Yin... 在深入分析现有各主流低照度图像增强(Low Light Image Enhancement,LLIE)算法的基础上,提出了一种采用两阶段混合策略实现的低照度图像增强(Hybrid LLIE,HLLIE)算法.具体地,在第一阶段,对于给定的低照度图像,利用互补效果较好的Fu和Ying两个主流LLIE算法分别对其进行增强预处理,所得到的两张增强后图像称为初步增强图像;在第二阶段,将所得到的两张初步增强图像输入到预先训练好的多通道浅层卷积神经网络(Multi⁃channel Shallow Convolution Neural Network,MSCNN)模型中,由MSCNN模型将两张初步增强图像优化组合为一张具有更高图像质量的最终增强图像.实验结果表明:与各主流LLIE算法相比,所提出的HLLIE算法在各个客观图像质量评价指标上有显著优势,人工主观评价亦能证实这一点. 展开更多
关键词 低照度图像增强 两阶段混合策略 初步增强图像 多通道浅层卷积神经网络 组合
在线阅读 下载PDF
基于自适应特征卷积网络的行人检测方法
8
作者 陈乔松 弓攀豪 +4 位作者 申发海 陶亚 董广县 王进 邓欣 《计算机应用研究》 CSCD 北大核心 2020年第7期2202-2205,2226,共5页
针对行人检测方法未能充分利用卷积网络浅层特征的问题,改进Faster R-CNN框架,提出了一种基于自适应特征卷积网络的行人检测方法。该方法有两处改进:a)设计了SFCM模块,用于提取卷积神经网络浅层细节特征;b)引用挤压与激励操作设计了AFC... 针对行人检测方法未能充分利用卷积网络浅层特征的问题,改进Faster R-CNN框架,提出了一种基于自适应特征卷积网络的行人检测方法。该方法有两处改进:a)设计了SFCM模块,用于提取卷积神经网络浅层细节特征;b)引用挤压与激励操作设计了AFCM模块,用于筛选检测所需的强辨识力行人特征。此外,利用公开的Caltech和INRIA行人数据集,通过在基准框架中逐一添加SFCM和AFCM模块训练行人检测器,验证了所提模块的有效性,并对比了主流行人检测算法。实验结果显示,所提方法的误检率分别降到了9.13%和9.46%,具有更优的检测性能。 展开更多
关键词 行人检测 卷积神经网络 浅层细节特征 自适应特征
在线阅读 下载PDF
融合浅层特征的深度卷积神经网络互花米草遥感监测方法 被引量:9
9
作者 朱玉玲 王建步 +6 位作者 王安东 王锦锦 赵晓龙 任广波 胡亚斌 陈晓英 马毅 《海洋科学》 CAS 北大核心 2019年第7期12-22,共11页
基于2018年10月份黄河口入海两侧的LANDSAT8 OLI影像,提取植被指数和缨帽变换分量共9维光谱特征,构建融合浅层特征的8层深度卷积神经网络(deep convolutional neural network,DCNN)分类模型,开展互花米草(Spartina alterniflora Loisel... 基于2018年10月份黄河口入海两侧的LANDSAT8 OLI影像,提取植被指数和缨帽变换分量共9维光谱特征,构建融合浅层特征的8层深度卷积神经网络(deep convolutional neural network,DCNN)分类模型,开展互花米草(Spartina alterniflora Loisel)遥感监测的方法研究,并从不同的浅层特征来具体分析互花米草的监测结果。结果表明:(1)在分类方法上,DCNN模型的总体分类精度最高,达到90.33%,与支持向量机(support vector machine,SVM)、随机森林(random forest,RF)分类器相比,精度分别提高4.78%、2.7%,互花米草的生产者精度分别提高了2.56%、0.47%,说明在滨海湿地遥感影像分类中,DCNN有着更好的应用潜力;(2)融合浅层特征后,DCNN的总体分类精度和互花米草的识别精度分别提高了0.34%和3.25%,有效提高了对互花米草的监测能力。其中,融合归一化植被水分指数(NDII)浅层特征的DCNN分类方法中,互花米草的识别精度提高最多,为2.56%,比值植被指数(RVI)次之,为2.32%。研究结果可为互花米草的监测与管理提供技术与数据支撑。 展开更多
关键词 深度卷积神经网络(deep convolutional neural network DCNN) 浅层特征融合 湿地分类 互花米草(Spartina alterniflora Loisel) 黄河口
在线阅读 下载PDF
基于级联卷积神经网络的图像篡改检测算法 被引量:9
10
作者 毕秀丽 魏杨 +2 位作者 肖斌 李伟生 马建峰 《电子与信息学报》 EI CSCD 北大核心 2019年第12期2987-2994,共8页
基于卷积神经网络的图像篡改检测算法利用卷积神经网络的学习能力可以实现不依赖于单一图像属性的图像篡改检测,弥补传统图像篡改检测方法依赖单一图像属性、适用度不高的缺陷。利用深层多神经元的单一网络结构的图像篡改检测算法虽然... 基于卷积神经网络的图像篡改检测算法利用卷积神经网络的学习能力可以实现不依赖于单一图像属性的图像篡改检测,弥补传统图像篡改检测方法依赖单一图像属性、适用度不高的缺陷。利用深层多神经元的单一网络结构的图像篡改检测算法虽然可以学习更高级的语义信息,但检测定位篡改区域效果并不理想。该文提出一种基于级联卷积神经网络的图像篡改检测算法,在卷积神经网络所展示出来的普遍特性的基础上进一步探究其深层次的特性,利用浅层稀神经元的级联网络结构弥补以往深层多神经元的单一网络结构在图像篡改检测中的缺陷。该文提出的检测算法由级联卷积神经网络和自适应筛选后处理两部分组成,级联卷积神经网络实现分级式的篡改区域定位,自适应筛选后处理对级联卷积神经网络的检测结果进行优化。通过实验对比,该文算法展示了较好的检测效果,且具有较高的鲁棒性。 展开更多
关键词 图像篡改检测 级联卷积神经网络 浅层稀神经元 级联网络结构 自适应筛选后处理
在线阅读 下载PDF
卷积神经网络单矢量水听器方位估计 被引量:5
11
作者 曹怀刚 任群言 +1 位作者 郭圣明 马力 《哈尔滨工程大学学报》 EI CAS CSCD 北大核心 2020年第10期1524-1529,共6页
针对浅海环境下单矢量水听器方位估计的问题,本文提出了一种利用卷积神经网络对目标声源进行方位估计的方法。利用KRAKEN模型仿真的声压和质点加速度对1个包含3个卷积层和4个全连接层的卷积神经网络进行训练,利用训练好的卷积神经网络... 针对浅海环境下单矢量水听器方位估计的问题,本文提出了一种利用卷积神经网络对目标声源进行方位估计的方法。利用KRAKEN模型仿真的声压和质点加速度对1个包含3个卷积层和4个全连接层的卷积神经网络进行训练,利用训练好的卷积神经网络模型进行方位估计。仿真数据训练的卷积神经网络模型具有良好的方位估计性能,即使在低信噪比的条件下,依然能够获得可靠的方位估计结果。海上实验数据处理结果表明:该神经网络模型可以有效地从舰船辐射噪声中提取特征并准确地估计目标船只的方位,与传统的加权直方图的方位估计方法相比,本文方法具有更高的估计精度和可靠性。 展开更多
关键词 矢量水听器 质点加速度 方位估计 卷积神经网络 KRAKEN模型 舰船辐射噪声 浅海波导 深度学习
在线阅读 下载PDF
基于注意力机制的人脸表情识别网络 被引量:11
12
作者 张为 李璞 《天津大学学报(自然科学与工程技术版)》 EI CAS CSCD 北大核心 2022年第7期706-713,共8页
人脸表情识别一直是计算机视觉领域的一个难题.近年来,随着深度学习的飞速发展,一些基于卷积神经网络的方法大大提高了人脸表情识别的准确率,但未能充分利用人脸图像中的信息,这是由于对于面部表情识别有意义的特征主要集中在一些关键位... 人脸表情识别一直是计算机视觉领域的一个难题.近年来,随着深度学习的飞速发展,一些基于卷积神经网络的方法大大提高了人脸表情识别的准确率,但未能充分利用人脸图像中的信息,这是由于对于面部表情识别有意义的特征主要集中在一些关键位置,例如眼睛、鼻子和嘴巴等区域,因此在特征提取时增加这些关键位置的权重可以改善表情识别的效果.为此,提出一种基于注意力机制的人脸表情识别网络.首先在主干网络中加入了深浅层特征融合结构,以充分提取原始图像中不同尺度的浅层特征,并将其与深层特征级联,以减少前向传播时的信息丢失.然后在网络中嵌入一种基于两步法的通道注意力模块,对级联后的特征图中的通道信息进行编码,得到通道注意力图,再将其与级联特征图逐元素相乘,得到通道加权特征图,将多尺度特征提取与空间注意力相结合,提出多尺度空间注意力模块,对通道加权特征图的不同位置进行加权,得到空间加权特征图.最后将通道和空间均已加权的特征图输入到后续网络中继续进行特征提取和分类.实验结果表明,所提出的方法与现有的基于深度学习的方法相比,在扩展的Cohn-Kanada数据集上的表情识别准确率提高了0~3%,在OULU-CASIA NIR&VIS数据集上的表情识别准确率提高了1%~8%,证明了该方法的有效性. 展开更多
关键词 人脸表情识别 卷积神经网络 注意力机制 深浅层特征融合
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部