期刊文献+
共找到186篇文章
< 1 2 10 >
每页显示 20 50 100
基于改进DeepLabv3+的安全帽佩戴分割算法
1
作者 邵晓艳 董文永 +2 位作者 赵雪专 李玲玲 薄树奎 《西南大学学报(自然科学版)》 北大核心 2025年第7期185-195,共11页
针对物流园区空间跨度大、作业设备繁多导致安全帽佩戴检测分割难度增加的问题,提出一种基于改进DeepLabv3+的安全帽佩戴分割算法。该算法采用ResNet-101膨胀残差网络进行特征提取;在编码阶段引入卷积注意力机制融合模块,有效增强特征... 针对物流园区空间跨度大、作业设备繁多导致安全帽佩戴检测分割难度增加的问题,提出一种基于改进DeepLabv3+的安全帽佩戴分割算法。该算法采用ResNet-101膨胀残差网络进行特征提取;在编码阶段引入卷积注意力机制融合模块,有效增强特征区域表征能力;在特征提取阶段引入图像特征网格化模块,将低分辨率图像进行平均切分,有助于获得局部图像的小目标特征。将该算法在SHWD(Safety Helmet Wearing Detect)数据集中训练测试,结果表明:算法的像素准确率达到89.23%,相比DeepLabv3+提升了2.21个百分点,有效提高了复杂场景下物流园区安全帽佩戴分割精度。 展开更多
关键词 神经网络 注意力机制 膨胀卷积 语义分割
在线阅读 下载PDF
基于ECA-TCN的数据中心磁盘故障预测 被引量:1
2
作者 张铭泉 王宝兴 《智能系统学报》 北大核心 2025年第2期389-399,共11页
随着数据中心规模的不断扩大,磁盘故障对数据中心的运行稳定性产生越来越大的影响。当前预测方法在面对大规模、高维度和长序列的磁盘运行数据时仍存在不足。本文提出了一种高效通道注意力时间卷积网络(efficient channel attention-tem... 随着数据中心规模的不断扩大,磁盘故障对数据中心的运行稳定性产生越来越大的影响。当前预测方法在面对大规模、高维度和长序列的磁盘运行数据时仍存在不足。本文提出了一种高效通道注意力时间卷积网络(efficient channel attention-temporal convolutional network,ECA-TCN)模型,通过结合传统卷积神经网络一维卷积的优势,融入扩张卷积和残差结构,并引入注意力机制,该模型能够提高磁盘故障预测的准确性和稳定性。在实验中,将ECA-TCN模型与其他经典深度学习方法进行了比较,实验结果表明,ECA-TCN模型在磁盘故障预测任务上具有较高的准确性和稳定性。 展开更多
关键词 磁盘故障预测 长短时记忆网络 循环神经网络 扩张卷积 高效通道注意力机制 神经网络模型 时间序列预测 深度学习优化
在线阅读 下载PDF
基于DC-HED网络和骨架提取的岩心图像边缘检测
3
作者 潘少伟 杨怡婷 +2 位作者 尚娅敏 郭智 蔡文斌 《中国石油大学学报(自然科学版)》 北大核心 2025年第3期97-107,共11页
整体嵌套边缘检测(holistically-nested edge detection,HED)网络是目前图像边缘检测领域内一种应用广泛且性能良好的深度网络模型,但存在图像检测边缘缺失、冗余和模糊不清等不足。针对此问题,提出一种扩张卷积(dilated convolution,DC... 整体嵌套边缘检测(holistically-nested edge detection,HED)网络是目前图像边缘检测领域内一种应用广泛且性能良好的深度网络模型,但存在图像检测边缘缺失、冗余和模糊不清等不足。针对此问题,提出一种扩张卷积(dilated convolution,DC)结合HED网络的深度网络模型DC-HED。首先,去除原HED网络最后两层的池化层以进一步保留图像边缘信息;再加入扩张卷积来扩大感受野,更好地还原图像边缘细节,重新设计DC-HED网络。之后利用Zhang-Suen算法对其图像边缘检测结果进行骨架提取。把DC-HED网络和骨架提取应用于中国陕北地区S油田不同岩心铸体薄片图像(简称岩心图像)的边缘检测中,获得较好的试验效果。结果表明:相比已有文献中方法、传统Canny算子、传统Sobel算子和原HED网络,DC-HED网络检测获得的图像边缘更完整,连通性更好;DC-HED网络测试得到的均方误差、结构相似性和峰值信噪比分别为0.1106、0.7997和9.5611,与前面几种方法相比,均有较大幅度的改善。最后将图像骨架提取方法应用于已获得的图像边缘中,剔除了杂乱的图像边缘信息,可得到清晰连续的图像边缘中心轮廓线条。 展开更多
关键词 岩心铸体薄片图像 边缘检测 岩心数字化 HED网络 扩张卷积 骨架提取
在线阅读 下载PDF
融合混合空洞卷积和动态卷积的敦煌壁画修复
4
作者 刘仲民 李耀龙 胡文瑾 《计算机工程与设计》 北大核心 2025年第2期595-602,共8页
为有效修复壁画破损区域的语义信息、解决壁画深层特征信息提取不足导致的修复伪影以及修复失真等问题,提出一种融合混合空洞卷积与动态卷积的敦煌壁画修复模型。针对修复伪影问题,在模型编码阶段设计一种混合残差模块;针对修复失真问题... 为有效修复壁画破损区域的语义信息、解决壁画深层特征信息提取不足导致的修复伪影以及修复失真等问题,提出一种融合混合空洞卷积与动态卷积的敦煌壁画修复模型。针对修复伪影问题,在模型编码阶段设计一种混合残差模块;针对修复失真问题,通过在动态核预测分支和动态语义及图像滤波分支中加入动态卷积来提高网络的预测和滤波性能。实验结果表明,所提模型具有更高的评价指标,且视觉效果上具有更细致的纹理,语义信息更丰富,边缘结构更连贯。 展开更多
关键词 信息处理技术 壁画修复 混合空洞卷积 动态卷积 图像滤波 残差网络 深度学习
在线阅读 下载PDF
基于无意调相边带信息的雷达辐射源个体识别
5
作者 黄湘松 王振 +1 位作者 潘大鹏 赵一洋 《电子与信息学报》 北大核心 2025年第6期1762-1771,共10页
无意调相是雷达辐射源个体识别中的关键信息,能够提供细微的相位变化信息,捕捉到不同辐射源的微小差异,在区分具有相似硬件结构的雷达辐射源时具有显著优势。针对同一厂家生产的同型号辐射源无意调相特性区分性不明显的问题,该文提出一... 无意调相是雷达辐射源个体识别中的关键信息,能够提供细微的相位变化信息,捕捉到不同辐射源的微小差异,在区分具有相似硬件结构的雷达辐射源时具有显著优势。针对同一厂家生产的同型号辐射源无意调相特性区分性不明显的问题,该文提出一种基于无意调相边带信息与深度学习相结合的个体识别方法。通过深入挖掘无意调相特性中的边带信息,增强不同辐射源个体间的差异性,并引入双路循环膨胀卷积网络增加神经网络感受野。实验实测数据显示,该方法在信噪比为5 dB的条件下,仍能对10台同型号的辐射源实现87.58%的平均识别准确率,对比1维残差网络,识别精度提高了21.41%。 展开更多
关键词 辐射源个体识别 无意调相 边带信息 循环膨胀卷积网络 同步压缩小波变换
在线阅读 下载PDF
基于多尺度胶囊Swin Transformer的SAR图像目标识别方法 被引量:1
6
作者 侯宇超 王洁 +4 位作者 李洪涛 郝岩 段晓旗 黄凯文 田有亮 《通信学报》 北大核心 2025年第3期274-290,共17页
通过协同胶囊单元的语义特征编码和Swin Transformer的上下文特征图建模优势相结合,提出了一种多尺度胶囊Swin Transformer网络(MSCSTN),将胶囊编码和Swin Transformer联合应用于SAR图像目标识别。该网络集成3个并行的胶囊Swin Transfor... 通过协同胶囊单元的语义特征编码和Swin Transformer的上下文特征图建模优势相结合,提出了一种多尺度胶囊Swin Transformer网络(MSCSTN),将胶囊编码和Swin Transformer联合应用于SAR图像目标识别。该网络集成3个并行的胶囊Swin Transformer编码结构,融合后对输入图像进行分类。每个结构通过基于膨胀卷积切片划分的胶囊令牌编码器和三维胶囊Swin Transformer模块构建,能捕获更深层次、更广泛的语义特征。在运动和静止目标的获取与识别(MSTAR)数据集及FUSAR-Ship数据集上的实验结果表明,MSCSTN在各种测试条件下均优于其他方法。结果表明,MSCSTN展现了良好的识别性能、泛化能力和应用潜力。 展开更多
关键词 膨胀卷积切片分区 胶囊令牌编码器 三维胶囊Swin Transformer模块 多尺度胶囊Swin Transformer网络 SAR图像目标识别
在线阅读 下载PDF
采用多尺度特征增强的路面病害检测模型 被引量:1
7
作者 胡鹏 夏晓华 +3 位作者 钟预全 段智威 姚运仕 成高立 《西安交通大学学报》 北大核心 2025年第2期156-169,共14页
针对现有网络多尺度特征提取能力不足造成路面病害因尺寸差异难以完全识别的问题,提出了一种多尺度特征增强的路面病害检测模型。构建基于混合空洞卷积的快速空间金字塔池化模块,通过堆叠不同膨胀系数的空洞卷积进一步扩大网络感受野,... 针对现有网络多尺度特征提取能力不足造成路面病害因尺寸差异难以完全识别的问题,提出了一种多尺度特征增强的路面病害检测模型。构建基于混合空洞卷积的快速空间金字塔池化模块,通过堆叠不同膨胀系数的空洞卷积进一步扩大网络感受野,以实现更大范围上下文信息的捕捉,并保留更多的空间信息;设计多路径特征融合网络,通过多分支和跳跃连接实现跨层级的特征捕捉,并减少特征融合过程中的信息丢失;采用K-means聚类算法结合交叉比获得合理的瞄点框;在损失函数中,设计一种面积惩罚项并设置下降梯度,提高预测框回归精度与效率;通过引入跨通道交互的高效注意力实现模型重要通道间的交互。实验结果表明:所提模型的检测精度比原模型YOLOv5s提高了4.0%;与Faster R-CNN、CenterNet等经典模型和YOLOv8s、YOLOv7n-tiny等先进模型相比,检测精度提高了1.0%~17.9%。模型经TensorRT加速引擎优化加速后,在NVIDIA Jetson TX2与NVIDIA Jetson Nano平台上的检测速率提高近1倍,同时不影响检测精度。 展开更多
关键词 路面病害检测 多尺度特征增强 混合空洞卷积 特征融合网络 高效通道注意力 嵌入式平台
在线阅读 下载PDF
基于组卷积和膨胀卷积的轻量注意力模块
8
作者 张恩淘 郝晓丽 牛保宁 《计算机工程与设计》 北大核心 2025年第2期493-499,共7页
为解决目前的注意力模块中参数量大、通道压缩导致信息丢失、空间信息学习不充分的缺点,提出一种基于组卷积、通道清洗和膨胀卷积的轻量注意力模块。采取组卷积和通道清洗的方式学习通道权重,能够在不压缩通道的前提下减少大量参数,使... 为解决目前的注意力模块中参数量大、通道压缩导致信息丢失、空间信息学习不充分的缺点,提出一种基于组卷积、通道清洗和膨胀卷积的轻量注意力模块。采取组卷积和通道清洗的方式学习通道权重,能够在不压缩通道的前提下减少大量参数,使不同组之间产生交互,充分学习通道信息。采取连续的膨胀卷积,合理设置膨胀率充分且均衡的学习空间信息。通过CIFAR100和VOC 2007+2012数据集对所提模块在图像分类和目标检测中进行实验,验证其能够在较少的花费下带来较大的提升。 展开更多
关键词 深度学习 卷积神经网络 注意力机制 组卷积 膨胀卷积 图像分类 目标检测
在线阅读 下载PDF
基于时序卷积特征过滤模型的地下水位预测方法
9
作者 孙均雨 徐佳磊 +2 位作者 张黎明 王在泉 文金浩 《水文》 北大核心 2025年第4期22-28,共7页
针对神经网络模型预测长时地下水位准确度低、运算资源消耗大的问题,提出了一种基于时序卷积特征过滤网络的地下水位预测方法,该方法能保持水文时序数据信息的完整性,拥有比卷积神经网络更大的感受野,能够精准捕捉地下水位的复杂时空关... 针对神经网络模型预测长时地下水位准确度低、运算资源消耗大的问题,提出了一种基于时序卷积特征过滤网络的地下水位预测方法,该方法能保持水文时序数据信息的完整性,拥有比卷积神经网络更大的感受野,能够精准捕捉地下水位的复杂时空关系。首先对水文数据进行预处理,然后采用空洞因果卷积方法作为特征提取器,结合注意力过滤模块提取水文数据特征,最后引入残差连接缓解模型训练过程中存在的网络层数过深、梯度消失和梯度爆炸问题。分别采用本文方法(DAR)、长短期神经网络(LSTM)、门控循环单元(GRU)、卷积门控循环单元(CNN-GRU)、时序卷积网络(TCN)预测意大利Petrignano水文数据变化,本文方法训练耗时最短,预测地下水位变化最为准确,验证了本文方法的可靠性。 展开更多
关键词 地下水位预测 时序卷积特征过滤 神经网络 空洞因果卷积 注意力过滤
在线阅读 下载PDF
血清HBsAg感染的Vis-NIR光谱模式识别研究
10
作者 高乔基 吴振邦 +6 位作者 徐茜 陈敏 刘文轩 曹诚诚 廖敬龙 欧超 潘涛 《分析测试学报》 北大核心 2025年第6期1016-1023,共8页
乙肝表面抗原(HBsAg)是乙肝病毒感染的重要标志物。该文建立了血清HBsAg感染的无试剂可见-近红外(Vis-NIR)光谱模式识别新方法。收集到临床血清样品1243例(HBsAg阳性601、阴性642),采用训练-预测-检验实验设计,搭建了基于多尺度卷积、压... 乙肝表面抗原(HBsAg)是乙肝病毒感染的重要标志物。该文建立了血清HBsAg感染的无试剂可见-近红外(Vis-NIR)光谱模式识别新方法。收集到临床血清样品1243例(HBsAg阳性601、阴性642),采用训练-预测-检验实验设计,搭建了基于多尺度卷积、压缩-激励网络(SE Net)注意力机制和多尺度膨胀卷积的新型卷积神经网络(CNN)集成算法,连同经典的偏最小二乘-判别分析(PLS-DA)和普通浅层CNN算法,被用于建立HBsAg阳性和阴性血清的Vis-NIR光谱判别模型。该研究采用标准正态变量(SNV)变换进行光谱预处理。基于近红外区(780~1118 nm)经SNV处理的光谱的PLS-DA模型和新型CNN模型取得更优的建模效果,新型CNN模型的灵敏度(SEN)达到99.3%,漏诊率(FNR)达到0.7%。结果表明,采用Vis-NIR光谱精准判别HBsAg阳性和阴性血清具有可行性,提出的新型深度学习算法可望应用于其他光谱分析领域。 展开更多
关键词 可见-近红外光谱模式识别 血清HBsAg感染判别 偏最小二乘-判别分析(PLS-DA) 卷积神经网络(CNN) SE Net注意力机制 多尺度膨胀卷积
在线阅读 下载PDF
基于残差膨胀卷积与门控编解码网络的语音增强
11
作者 李珂 王雅静 +1 位作者 昝志辉 齐瑞洁 《电子测量与仪器学报》 北大核心 2025年第4期74-83,共10页
语音信号的时序依赖性特征和上下文信息在语音增强任务中至关重要,针对编解码网络对其捕获不充分导致增强效果差的问题,构建了一种非对称的残差膨胀卷积与门控编解码网络(RD-EGN),该网络包含编码器、中间层和解码器3部分。编码器设计了... 语音信号的时序依赖性特征和上下文信息在语音增强任务中至关重要,针对编解码网络对其捕获不充分导致增强效果差的问题,构建了一种非对称的残差膨胀卷积与门控编解码网络(RD-EGN),该网络包含编码器、中间层和解码器3部分。编码器设计了一种因果卷积层结构,以时序特征建模,捕获语音序列中不同层的特征,并保持语音信号的因果性;中间层设计了残差膨胀卷积网络(RDCN),融合膨胀卷积、残差连接和级联的扩张块使网络拥有更高的感受野,以跨层的方式传递信息并提取语音长时依赖性特征,在此基础上将RDCN与长短时记忆网络相结合,捕获更广泛的上下文信息;解码器引入门控机制,动态调整信息流的门控程度,获得更丰富的全局特征并重建增强语音。分别在TIMIT、UrbanSound8k、VoiceBank及NOISE92数据集上进行消融及性能对照,实验结果表明,RD-EGN相较于卷积循环网络(CRN)、自编码器卷积神经网络(AECNN)、膨胀-密集自动编码器(DDAEC)等具有较少的训练参数和较高的SSNR得分、主观评价指标(CSIG,CBAK和COVL)得分,并且在客观评价指标方面,语音质量客观评价指标(PESQ)提高了2.5%~7.1%,短时客观可懂度(STOI)提高了1%~5.3%,具有较为突出的增强性能与泛化能力。 展开更多
关键词 语音增强 深度学习 编解码网络 膨胀卷积 门控机制
在线阅读 下载PDF
基于多尺度自适应残差网络的轴承故障诊断
12
作者 朱海龙 董绍江 +1 位作者 赵兴新 黄翔 《组合机床与自动化加工技术》 北大核心 2025年第5期189-193,200,共6页
针对轴承故障诊断过程中传统模型在高噪声背景下依赖单一高维特征预测的局限性及其特征学习能力的不足,提出了一种基于多尺度自适应混合残差神经网络结构(MSCNN-FFDRSN)深度学习模型,该方法首先通过应用多尺度混合空洞卷积模块,增加模... 针对轴承故障诊断过程中传统模型在高噪声背景下依赖单一高维特征预测的局限性及其特征学习能力的不足,提出了一种基于多尺度自适应混合残差神经网络结构(MSCNN-FFDRSN)深度学习模型,该方法首先通过应用多尺度混合空洞卷积模块,增加模型的感受野和特征融合能力,减少参数量,实现高噪声背景下提升模型的性能和泛化能力。其次,对于深度残差收缩网络模块,通过引入可变核卷积,根据输入数据的变化自主进行动态改变卷积核大小,引入concat连接,使深层特征和浅层特征进一步融合,利用注意力模块和软阈值对逐通道特征赋不同阈值并降噪。实验表明,所提方法在XJTU-SY公开轴承数据集上平均准确率表现为98.70%,并在某公司自制的轴承故障数据集(CME)上也表现出了极高的准确率和较快的收敛速度。 展开更多
关键词 多尺度空洞卷积 深度残差收缩网络 可变核卷积 注意力机制
在线阅读 下载PDF
基于全局与局部肌电特征交互的手势识别网络
13
作者 肖城钢 闵华松 《控制理论与应用》 北大核心 2025年第3期609-617,共9页
为了更有效地捕捉肌电信号中的长期动态依赖关系和局部细节信息,减少固有肌电特征信息损失对手势分类精度的影响,本文提出一种基于全局-局部特征交互的手势识别网络GL-EMG-Net.首先,融合空洞卷积和多头自注意力机制,设计全局特征提取模... 为了更有效地捕捉肌电信号中的长期动态依赖关系和局部细节信息,减少固有肌电特征信息损失对手势分类精度的影响,本文提出一种基于全局-局部特征交互的手势识别网络GL-EMG-Net.首先,融合空洞卷积和多头自注意力机制,设计全局特征提取模块Global-DT,提取肌电信号中的全局信息;然后,借助深度可分离卷积和注意力机制,设计局部特征提取模块Local-SK捕捉肌电信号中不同尺度的局部细节信息,并将提取的细节信息通过反馈机制反馈至Global-DT模块,完成局部特征与全局特征的交互;最后,将全局特征与局部特征融合后进行分类.实验结果表明,该手势识别网络在Ninapro DB5数据集的52种手势和实际12种常见手势分类中,表现出较高的手势分类精度和较强的鲁棒性. 展开更多
关键词 表面肌电信号 手势识别 空洞卷积网络 注意力机制 特征融合
在线阅读 下载PDF
基于多尺度残差特征融合网络的绵羊计数方法
14
作者 谢其宏 刘东宝 刘盛 《中国农机化学报》 北大核心 2025年第5期58-67,共10页
针对牧场内绵羊计数中目标尺度变化大、遮挡严重等导致的漏检误检、计数精度低的问题,提出一种基于改进CSRNet的多尺度残差特征融合网络的草原绵羊数估计方法。该方法在CSRNet基础上进行改进,利用密集扩张卷积构建密集多尺度残差模块,... 针对牧场内绵羊计数中目标尺度变化大、遮挡严重等导致的漏检误检、计数精度低的问题,提出一种基于改进CSRNet的多尺度残差特征融合网络的草原绵羊数估计方法。该方法在CSRNet基础上进行改进,利用密集扩张卷积构建密集多尺度残差模块,嵌入到模型骨干网络中,用于提取绵羊目标的多尺度特征,更好地适应绵羊的多尺度变化。此外,构建多分支特征提取网络,优化骨干网络输出特征图信息,加强模型整体特征提取能力,进而提高计数精度。同时,引入CBAM注意力模块,加强绵羊位置特征的表达能力,进一步修正输出密度图。试验结果表明,所提方法的平均绝对误差MAE和均方根误差RMSE分别为12.3、13.9,明显优于CSRNet、MCNN、DSNet、PaDNet和HA—CCN五种主流计数方法;且在羊群密集分布、遮挡严重和光照不足的情况下展现出较高的鲁棒性和准确性,证明其在草原羊群计数任务中的优越性能。 展开更多
关键词 绵羊计数 卷积神经网络 多尺度 扩张卷积 深度估计
在线阅读 下载PDF
空间信息引导的双分支实时语义分割算法
15
作者 侯志强 戴楠 +3 位作者 程敏捷 李富成 马素刚 范九伦 《北京航空航天大学学报》 北大核心 2025年第1期19-29,共11页
针对实时语义分割模型大量缩减参数造成特征空间信息损失,以及特征缺少上下文信息导致分割类别预测不准确的问题,提出一种基于空间信息引导的双分支实时语义分割算法。该算法采用双分支结构分别获取特征的空间信息和语义信息,为更好地... 针对实时语义分割模型大量缩减参数造成特征空间信息损失,以及特征缺少上下文信息导致分割类别预测不准确的问题,提出一种基于空间信息引导的双分支实时语义分割算法。该算法采用双分支结构分别获取特征的空间信息和语义信息,为更好地保留空间信息,设计了一种空间引导模块(SGM),同时捕获特征的局部信息和周围上下文信息,并通过通道加权给予重要信息更高的权重,有效弥补了图像高分辨率特征在降采样过程中的信息损失;为进一步强化特征的上下文信息表征能力,设计了池化特征增强模块(PFEM),采用不同尺寸的池化核捕获多尺度特征信息,并采用条状池化核对特征之间的长距离依赖关系进行建模,更好地确定分割区域的类别。在Cityscapes和CamVid数据集上对所提算法进行验证,平均交并比分别达到77.4%和74.0%,检测速度分别达到49.1帧/s和124.5帧/s,在保证实时分割的情况下有效提升了精度,获得了良好的语义分割性能。 展开更多
关键词 图像处理 实时语义分割 卷积神经网络 空洞卷积 上下文信息
在线阅读 下载PDF
结合双向注意力机制的网络欺凌检测
16
作者 周杭霞 厉贤斌 +1 位作者 崔晨 许瑞旭 《计算机工程与设计》 北大核心 2025年第2期523-529,共7页
针对网络欺凌文本内容嘈杂、文本特征交互不足的问题,提出一种结合双向注意力机制的网络欺凌检测模型。多尺度门控扩张因果卷积(MGDC)提取文本不同感受视野下的局部特征;双向门控循环单元(BiGRU)提取全局上下文语义特征;利用双向注意力... 针对网络欺凌文本内容嘈杂、文本特征交互不足的问题,提出一种结合双向注意力机制的网络欺凌检测模型。多尺度门控扩张因果卷积(MGDC)提取文本不同感受视野下的局部特征;双向门控循环单元(BiGRU)提取全局上下文语义特征;利用双向注意力机制学习全局上下文语义特征和局部特征之间的交互作用,弥补各自特征之间的不足。通过胶囊网络进行深层次的特征提取。通过实验验证了该方法在网络欺凌文本检测中的准确性和有效性。 展开更多
关键词 网络欺凌 社交媒体 多尺度门控扩张因果卷积 双向注意力机制 胶囊网络 双向门控循环单元 特征提取
在线阅读 下载PDF
基于深度学习的煤岩Micro-CT裂隙智能提取与应用 被引量:4
17
作者 王登科 房禹 +8 位作者 魏建平 张宏图 赵立桢 王龙航 夏缘帝 李璐 王少璞 张强 任海慧 《煤炭学报》 EI CAS CSCD 北大核心 2024年第8期3439-3452,共14页
为解决煤岩CT裂隙图像识别中矸石影响以及不同尺度裂隙识别的问题,设计并实现了一种基于深度学习的煤岩裂隙提取网络模型(MCSN),该模型基于U-Net网络,利用其编码器-解码器结构和跳跃连接,可实现从复杂煤岩体中分割出完整的裂隙结构图像... 为解决煤岩CT裂隙图像识别中矸石影响以及不同尺度裂隙识别的问题,设计并实现了一种基于深度学习的煤岩裂隙提取网络模型(MCSN),该模型基于U-Net网络,利用其编码器-解码器结构和跳跃连接,可实现从复杂煤岩体中分割出完整的裂隙结构图像。首先,通过煤岩工业CT扫描系统获取煤岩体内部扫描图片后,人工标注出CT图像中的裂隙结构,并利用数据增强扩充标注的原始数据制作出煤岩CT裂隙数据集;然后,将训练好的VGG16模型权重通过迁移学习技术移至U-Net编码器部分,使得整个主干特征提取网络具有更强的裂隙结构特征提取能力;同时采用深度可分离空洞卷积模块(DCAC)和残差模块对U-Net模型中解码器部分进行改进,有效提升了CT图像中裂隙结构的识别能力,展现出了优越的分割精度和鲁棒性。为验证提出的煤岩裂隙提取网络模型的有效性,将MCSN的提取结果与经典的卷积神经网络及阈值分割方法的结果进行了对比,实验对比结果显示,提出的模型在定性分析和定量分析方面优势明显。这种多尺度融合的策略可以有效提取出复杂煤岩体图像中的裂隙,提高了裂隙识别效率和精度。将该模型应用到巷道围岩钻孔裂隙识别中,通过对钻孔成像仪采集到的窥孔视频和平面展开图进行裂隙提取,并结合二者提取结果进行交叉验证,得到了精准的巷道围岩裂隙分布范围,给出了穿层抽采钻孔的注浆封孔范围,提高了煤层瓦斯抽采体积分数。 展开更多
关键词 裂隙识别与提取 CT扫描 深度学习 卷积神经网络 空洞卷积
在线阅读 下载PDF
数据驱动的半无限介质裂纹识别模型研究 被引量:2
18
作者 江守燕 邓王涛 +1 位作者 孙立国 杜成斌 《力学学报》 EI CAS CSCD 北大核心 2024年第6期1727-1739,共13页
缺陷识别是结构健康监测的重要研究内容,对评估工程结构的安全性具有重要的指导意义,然而,准确确定结构缺陷的尺寸十分困难.论文提出了一种创新的数据驱动算法,将比例边界有限元法(scaled boundary finite element methods,SBFEM)与自... 缺陷识别是结构健康监测的重要研究内容,对评估工程结构的安全性具有重要的指导意义,然而,准确确定结构缺陷的尺寸十分困难.论文提出了一种创新的数据驱动算法,将比例边界有限元法(scaled boundary finite element methods,SBFEM)与自编码器(autoencoder,AE)、因果膨胀卷积神经网络(causal dilated convolutional neural network,CDCNN)相结合用于半无限介质中的裂纹识别.在该模型中,SBFEM用于模拟波在含不同裂纹状缺陷半无限介质中的传播过程,对于不同的裂纹状缺陷,仅需改变裂纹尖端的比例中心和裂纹开口处节点的位置,避免了复杂的重网格过程,可高效地生成足够的训练数据.模拟波在半无限介质中传播时,建立了基于瑞利阻尼的吸收边界模型,避免了对结构全域模型进行计算.搭建了CDCNN,确保了时序数据的有序性,并获得更大的感受野而不增加神经网络的复杂性,可捕捉更多的历史信息,AE具有较强的非线性特征提取能力,可将高维的原始输入特征向量空间映射到低维潜在特征向量空间,以获得低维潜在特征用于网络模型训练,有效提升了网络模型的学习效率.数值算例表明:提出的模型能够高效且准确地识别半无限介质中裂纹的量化信息,且AE-CDCNN模型的识别效率较单CDCNN模型提高了约2.7倍. 展开更多
关键词 数据驱动 比例边界有限元法 自编码器 因果膨胀卷积神经网络 裂纹识别
在线阅读 下载PDF
密度导向的点云动态图卷积网络 被引量:1
19
作者 刘玉杰 孙晓瑞 +1 位作者 邵文斌 李宗民 《计算机辅助设计与图形学学报》 EI CSCD 北大核心 2024年第5期701-710,共10页
针对现有主流网络对于点云局部特征提取的能力不足,以及在特征提取过程中未考虑点云密度的问题,提出一种密度导向的点云动态图卷积网络.首先提出点云局部密度指数的概念,衡量点及其邻域点在相应的空间位置中的密集程度;然后利用局部密... 针对现有主流网络对于点云局部特征提取的能力不足,以及在特征提取过程中未考虑点云密度的问题,提出一种密度导向的点云动态图卷积网络.首先提出点云局部密度指数的概念,衡量点及其邻域点在相应的空间位置中的密集程度;然后利用局部密度指数动态赋予每个点一个膨胀因子,提出密度导向的动态点分组方法对点云构建局部图结构,对每个局部图结构构造动态边缘卷积模块进行特征的提取与聚合,既提取了点云的几何特征,又实现了置换不变性;最后采用残差网络的思想优化图神经网络的过平滑问题.实验结果表明,在分类数据集ModelNet40与ScanObjectNN上,所提网络的分类准确率分别为93.5%和82.2%;在分割数据集ShapeNet与S3DIS上,该网络的平均交并比分别为85.6%和60.4%,均高于DGCNN等主流网络;所提网络在多项任务中的精度都得到显著提升,且在处理密度不均的点云时有较好的鲁棒性,验证了所提算法的可行性与有效性. 展开更多
关键词 点云密度 膨胀因子 动态点分组 动态边缘卷积 图卷积网络
在线阅读 下载PDF
基于纹理先验的扩张残差注意力相似性去噪网络 被引量:1
20
作者 周先春 史振婷 +2 位作者 王子威 李婷 张影 《电子测量与仪器学报》 CSCD 北大核心 2024年第5期75-89,共15页
目前,大多数基于卷积神经网络的图像去噪模型不能充分利用图像数据的冗余性,这限制了模型的表达能力。而且,为了有效去噪,往往将边缘信息用作先验知识,而纹理信息通常被忽略。针对这些问题,提出一种新的图像去噪网络,该网络首先使用注... 目前,大多数基于卷积神经网络的图像去噪模型不能充分利用图像数据的冗余性,这限制了模型的表达能力。而且,为了有效去噪,往往将边缘信息用作先验知识,而纹理信息通常被忽略。针对这些问题,提出一种新的图像去噪网络,该网络首先使用注意力相似性模块提取图像的全局相似性特征,通过平均池化来平滑和抑制注意力相似性模块中的噪声,以进一步提高网络性能;其次使用扩张残差模块来提取图像的局部和全局特征;最后使用全局残差学习增强网络从浅层到深层的去噪效果。此外,还设计一种纹理提取网络从噪声图像中提取局部二值模式以获取纹理信息,利用纹理信息作为先验知识,可在去噪过程中保留演化图像中的细节。实验结果表明,与一些先进的去噪网络相比,新提出的去噪网络在图像视觉上有很大改善、效率更高且峰值信噪比提高了2 dB左右,结构相似性提高了3%左右,更有利于实际应用。 展开更多
关键词 图像去噪 卷积神经网络 纹理信息 注意力相似性模块 扩张残差模块
在线阅读 下载PDF
上一页 1 2 10 下一页 到第
使用帮助 返回顶部