期刊文献+
共找到17,195篇文章
< 1 2 250 >
每页显示 20 50 100
Detection of geohazards caused by human disturbance activities based on convolutional neural networks
1
作者 ZHANG Heng ZHANG Diandian +1 位作者 YUAN Da LIU Tao 《水利水电技术(中英文)》 北大核心 2025年第S1期731-738,共8页
Human disturbance activities is one of the main reasons for inducing geohazards.Ecological impact assessment metrics of roads are inconsistent criteria and multiple.From the perspective of visual observation,the envir... Human disturbance activities is one of the main reasons for inducing geohazards.Ecological impact assessment metrics of roads are inconsistent criteria and multiple.From the perspective of visual observation,the environment damage can be shown through detecting the uncovered area of vegetation in the images along road.To realize this,an end-to-end environment damage detection model based on convolutional neural network is proposed.A 50-layer residual network is used to extract feature map.The initial parameters are optimized by transfer learning.An example is shown by this method.The dataset including cliff and landslide damage are collected by us along road in Shennongjia national forest park.Results show 0.4703 average precision(AP)rating for cliff damage and 0.4809 average precision(AP)rating for landslide damage.Compared with YOLOv3,our model shows a better accuracy in cliff and landslide detection although a certain amount of speed is sacrificed. 展开更多
关键词 convolutional neural network DETECTION environment damage CLIFF LANDSLIDE
在线阅读 下载PDF
Non-existence of the nontrivial solution for a Sobolev type evolution inequality with nonlinear convolution term
2
作者 SU Jiahui LIU Dengming 《中山大学学报(自然科学版)(中英文)》 北大核心 2025年第5期146-153,共8页
An evolution inequality of Sobolev type involving a nonlinear convolution term is considered.By using the nonlinear capacity method and the contradiction argument,the non-existence of the nontrivial local weak solutio... An evolution inequality of Sobolev type involving a nonlinear convolution term is considered.By using the nonlinear capacity method and the contradiction argument,the non-existence of the nontrivial local weak solution is proved. 展开更多
关键词 Sobolev type evolution inequality nonlinear convolution term nontrivial solution nonexistence
在线阅读 下载PDF
基于Convolutional-LSTM的蛋白质亚细胞定位研究 被引量:2
3
作者 王春宇 徐珊珊 +2 位作者 郭茂祖 车凯 刘晓燕 《计算机科学与探索》 CSCD 北大核心 2019年第6期982-989,共8页
蛋白质亚细胞位置预测研究是目前蛋白质组学和生物信息学研究的重点问题之一。蛋白质的亚细胞定位决定了它的生物学功能,故研究亚细胞定位对了解蛋白质功能非常重要。由于蛋白质结构的序列性,考虑使用序列模型来进行亚细胞定位研究。尝... 蛋白质亚细胞位置预测研究是目前蛋白质组学和生物信息学研究的重点问题之一。蛋白质的亚细胞定位决定了它的生物学功能,故研究亚细胞定位对了解蛋白质功能非常重要。由于蛋白质结构的序列性,考虑使用序列模型来进行亚细胞定位研究。尝试使用卷积神经网络(convolutional neural network,CNN)、长短期记忆神经网络(long short-term memory,LSTM)两种模型挖掘氨基酸序列所包含的信息,从而进行亚细胞定位的预测。随后构建了基于卷积的长短期记忆网络(Convolutional-LSTM)的集成模型进行亚细胞定位。首先通过卷积神经网络对蛋白质数据进行特征抽取,随后进行特征组合,并将其送入长短期记忆神经网络进行特征表征学习,得到亚细胞定位结果。使用该模型能达到0.816 5的分类准确率,比传统方法有明显提升。 展开更多
关键词 蛋白质亚细胞定位 卷积神经网络(CNN) 长短期记忆神经网络(LSTM) 分类
在线阅读 下载PDF
Convolutional neural networks for time series classification 被引量:52
4
作者 Bendong Zhao Huanzhang Lu +2 位作者 Shangfeng Chen Junliang Liu Dongya Wu 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2017年第1期162-169,共8页
Time series classification is an important task in time series data mining, and has attracted great interests and tremendous efforts during last decades. However, it remains a challenging problem due to the nature of ... Time series classification is an important task in time series data mining, and has attracted great interests and tremendous efforts during last decades. However, it remains a challenging problem due to the nature of time series data: high dimensionality, large in data size and updating continuously. The deep learning techniques are explored to improve the performance of traditional feature-based approaches. Specifically, a novel convolutional neural network (CNN) framework is proposed for time series classification. Different from other feature-based classification approaches, CNN can discover and extract the suitable internal structure to generate deep features of the input time series automatically by using convolution and pooling operations. Two groups of experiments are conducted on simulated data sets and eight groups of experiments are conducted on real-world data sets from different application domains. The final experimental results show that the proposed method outperforms state-of-the-art methods for time series classification in terms of the classification accuracy and noise tolerance. © 1990-2011 Beijing Institute of Aerospace Information. 展开更多
关键词 convolution Data mining Neural networks Time series Virtual reality
在线阅读 下载PDF
Blind recognition of k/n rate convolutional encoders from noisy observation 被引量:14
5
作者 Li Huang Wengu Chen +1 位作者 Enhong Chen Hong Chen 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2017年第2期235-243,共9页
Blind recognition of convolutional codes is not only essential for cognitive radio, but also for non-cooperative context. This paper is dedicated to the blind identification of rate k/n convolutional encoders in a noi... Blind recognition of convolutional codes is not only essential for cognitive radio, but also for non-cooperative context. This paper is dedicated to the blind identification of rate k/n convolutional encoders in a noisy context based on Walsh-Hadamard transformation and block matrix (WHT-BM). The proposed algorithm constructs a system of noisy linear equations and utilizes all its coefficients to recover parity check matrix. It is able to make use of fault-tolerant feature of WHT, thus providing more accurate results and achieving better error performance in high raw bit error rate (BER) regions. Moreover, it is more computationally efficient with the use of the block matrix (BM) method. © 2017 Beijing Institute of Aerospace Information. 展开更多
关键词 Cognitive radio convolution convolutional codes Error correction Hadamard matrices Hadamard transforms Linear transformations Mathematical transformations Matrix algebra Signal encoding
在线阅读 下载PDF
Blind reconstruction of convolutional code based on segmented Walsh-Hadamard transform 被引量:12
6
作者 Fenghua Wang Hui Xie Zhitao Huang 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2014年第5期748-754,共7页
Walsh-Hadamard transform (WriT) can solve linear error equations on Field F2, and the method can be used to recover the parameters of convolutional code. However, solving the equations with many unknowns needs enorm... Walsh-Hadamard transform (WriT) can solve linear error equations on Field F2, and the method can be used to recover the parameters of convolutional code. However, solving the equations with many unknowns needs enormous computer memory which limits the application of WriT. In order to solve this problem, a method based on segmented WriT is proposed in this paper. The coefficient vector of high dimension is reshaped and two vectors of lower dimension are obtained. Then the WriT is operated and the requirement for computer memory is much reduced. The code rate and the constraint length of convolutional code are detected from the Walsh spectrum. And the check vector is recovered from the peak position. The validity of the method is verified by the simulation result, and the performance is proved to be optimal. 展开更多
关键词 convolutional code blind reconstruction Walsh-Hadamard transform (WriT) tinear error equation.
在线阅读 下载PDF
Piecewise linear recursive convolution FDTD method for magnetized plasmas 被引量:4
7
作者 Liu Song Zhong Shuangying Liu Shaobin 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2006年第2期290-295,共6页
The piecewise linear recursive convolution (PLRC) finite-different time-domain (FDTD) method greatly improves accuracy over the original recursive convolution (RC) FDTD approach but retains its speed and efficie... The piecewise linear recursive convolution (PLRC) finite-different time-domain (FDTD) method greatly improves accuracy over the original recursive convolution (RC) FDTD approach but retains its speed and efficiency advantages. A PLRC-FDTD formulation for magnetized plasma which incorporates both anisotropy and frequency dispersion at the same time is presented, enabled the transient analysis of magnetized plasma media. The technique is illustrated by numerical simulations the reflection and transmission coefficients through a magnetized plasma layer. The results show that the PLRC-FDTD method has significantly improved the accuracy over the original RC method. 展开更多
关键词 electromagnetic wave FDTD methods piecewise linear recursive convolution magnetized plasma.
在线阅读 下载PDF
Effective distributed convolutional neural network architecture for remote sensing images target classification with a pre-training approach 被引量:3
8
作者 LI Binquan HU Xiaohui 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2019年第2期238-244,共7页
How to recognize targets with similar appearances from remote sensing images(RSIs) effectively and efficiently has become a big challenge. Recently, convolutional neural network(CNN) is preferred in the target classif... How to recognize targets with similar appearances from remote sensing images(RSIs) effectively and efficiently has become a big challenge. Recently, convolutional neural network(CNN) is preferred in the target classification due to the powerful feature representation ability and better performance. However,the training and testing of CNN mainly rely on single machine.Single machine has its natural limitation and bottleneck in processing RSIs due to limited hardware resources and huge time consuming. Besides, overfitting is a challenge for the CNN model due to the unbalance between RSIs data and the model structure.When a model is complex or the training data is relatively small,overfitting occurs and leads to a poor predictive performance. To address these problems, a distributed CNN architecture for RSIs target classification is proposed, which dramatically increases the training speed of CNN and system scalability. It improves the storage ability and processing efficiency of RSIs. Furthermore,Bayesian regularization approach is utilized in order to initialize the weights of the CNN extractor, which increases the robustness and flexibility of the CNN model. It helps prevent the overfitting and avoid the local optima caused by limited RSI training images or the inappropriate CNN structure. In addition, considering the efficiency of the Na¨?ve Bayes classifier, a distributed Na¨?ve Bayes classifier is designed to reduce the training cost. Compared with other algorithms, the proposed system and method perform the best and increase the recognition accuracy. The results show that the distributed system framework and the proposed algorithms are suitable for RSIs target classification tasks. 展开更多
关键词 convolutional NEURAL network (CNN) DISTRIBUTED architecture REMOTE SENSING images (RSIs) TARGET classification pre-training
在线阅读 下载PDF
Discrimination of mining microseismic events and blasts using convolutional neural networks and original waveform 被引量:25
9
作者 DONG Long-jun TANG Zheng +2 位作者 LI Xi-bing CHEN Yong-chao XUE Jin-chun 《Journal of Central South University》 SCIE EI CAS CSCD 2020年第10期3078-3089,共12页
Microseismic monitoring system is one of the effective methods for deep mining geo-stress monitoring.The principle of microseismic monitoring system is to analyze the mechanical parameters contained in microseismic ev... Microseismic monitoring system is one of the effective methods for deep mining geo-stress monitoring.The principle of microseismic monitoring system is to analyze the mechanical parameters contained in microseismic events for providing accurate information of rockmass.The accurate identification of microseismic events and blasts determines the timeliness and accuracy of early warning of microseismic monitoring technology.An image identification model based on Convolutional Neural Network(CNN)is established in this paper for the seismic waveforms of microseismic events and blasts.Firstly,the training set,test set,and validation set are collected,which are composed of 5250,1500,and 750 seismic waveforms of microseismic events and blasts,respectively.The classified data sets are preprocessed and input into the constructed CNN in CPU mode for training.Results show that the accuracies of microseismic events and blasts are 99.46%and 99.33%in the test set,respectively.The accuracies of microseismic events and blasts are 100%and 98.13%in the validation set,respectively.The proposed method gives superior performance when compared with existed methods.The accuracies of models using logistic regression and artificial neural network(ANN)based on the same data set are 54.43%and 67.9%in the test set,respectively.Then,the ROC curves of the three models are obtained and compared,which show that the CNN gives an absolute advantage in this classification model when the original seismic waveform are used in training the model.It not only decreases the influence of individual differences in experience,but also removes the errors induced by source and waveform parameters.It is proved that the established discriminant method improves the efficiency and accuracy of microseismic data processing for monitoring rock instability and seismicity. 展开更多
关键词 microseismic monitoring waveform classification microseismic events BLASTS convolutional neural network
在线阅读 下载PDF
Automatic Calcified Plaques Detection in the OCT Pullbacks Using Convolutional Neural Networks 被引量:2
10
作者 Chunliu He Yifan Yin +2 位作者 Jiaqiu Wang Biao Xu Zhiyong Li 《医用生物力学》 EI CAS CSCD 北大核心 2019年第A01期109-110,共2页
Background Coronary artery calcification is a well-known marker of atherosclerotic plaque burden.High-resolution intravascular optical coherence tomography(OCT)imaging has shown the potential to characterize the detai... Background Coronary artery calcification is a well-known marker of atherosclerotic plaque burden.High-resolution intravascular optical coherence tomography(OCT)imaging has shown the potential to characterize the details of coronary calcification in vivo.In routine clinical practice,it is a time-consuming and laborious task for clinicians to review the over 250 images in a single pullback.Besides,the imbalance label distribution within the entire pullbacks is another problem,which could lead to the failure of the classifier model.Given the success of deep learning methods with other imaging modalities,a thorough understanding of calcified plaque detection using Convolutional Neural Networks(CNNs)within pullbacks for future clinical decision was required.Methods All 33 IVOCT clinical pullbacks of 33 patients were taken from Affiliated Drum Tower Hospital,Nanjing University between December 2017 and December 2018.For ground-truth annotation,three trained experts determined the type of plaque that was present in a B-Scan.The experts assigned the labels'no calcified plaque','calcified plaque'for each OCT image.All experts were provided the all images for labeling.The final label was determined based on consensus between the experts,different opinions on the plaque type were resolved by asking the experts for a repetition of their evaluation.Before the implement of algorithm,all OCT images was resized to a resolution of 300×300,which matched the range used with standard architectures in the natural image domain.In the study,we randomly selected 26 pullbacks for training,the remaining data were testing.While,imbalance label distribution within entire pullbacks was great challenge for various CNNs architecture.In order to resolve the problem,we designed the following experiment.First,we fine-tuned twenty different CNNs architecture,including customize CNN architectures and pretrained CNN architectures.Considering the nature of OCT images,customize CNN architectures were designed that the layers were fewer than 25 layers.Then,three with good performance were selected and further deep fine-tuned to train three different models.The difference of CNNs was mainly in the model architecture,such as depth-based residual networks,width-based inception networks.Finally,the three CNN models were used to majority voting,the predicted labels were from the most voting.Areas under the receiver operating characteristic curve(ROC AUC)were used as the evaluation metric for the imbalance label distribution.Results The imbalance label distribution within pullbacks affected both convergence during the training phase and generalization of a CNN model.Different labels of OCT images could be classified with excellent performance by fine tuning parameters of CNN architectures.Overall,we find that our final result performed best with an accuracy of 90%of'calcified plaque'class,which the numbers were less than'no calcified plaque'class in one pullback.Conclusions The obtained results showed that the method is fast and effective to classify calcific plaques with imbalance label distribution in each pullback.The results suggest that the proposed method could be facilitating our understanding of coronary artery calcification in the process of atherosclerosis andhelping guide complex interventional strategies in coronary arteries with superficial calcification. 展开更多
关键词 CALCIFIED PLAQUE INTRAVASCULAR optical coherence tomography deep learning IMBALANCE LABEL distribution convolutional neural networks
在线阅读 下载PDF
Borehole-GPR numerical simulation of full wave field based on convolutional perfect matched layer boundary 被引量:7
11
作者 朱自强 彭凌星 +1 位作者 鲁光银 密士文 《Journal of Central South University》 SCIE EI CAS 2013年第3期764-769,共6页
The absorbing boundary is the key in numerical simulation of borehole radar.Perfect match layer(PML) was chosen as the absorbing boundary in numerical simulation of GPR.But CPML(convolutional perfect match layer) appr... The absorbing boundary is the key in numerical simulation of borehole radar.Perfect match layer(PML) was chosen as the absorbing boundary in numerical simulation of GPR.But CPML(convolutional perfect match layer) approach that we have chosen has the advantage of being media independent.Beginning with the Maxwell equations in a two-dimensional structure,numerical formulas of finite-difference time-domain(FDTD) method with CPML boundary condition for transverse electric(TE) or transverse magnetic(TM) wave are presented in details.Also,there are three models for borehole-GPR simulation.By analyzing the simulation results,the features of targets in GPR are obtained,which can provide a better interpretation of real radar data.The results show that CPML is well suited for the simulation of borehole-GPR. 展开更多
关键词 borehole-GPR numerical simulation convolutional perfect match layer finite-difference time-domain method
在线阅读 下载PDF
Real-time object segmentation based on convolutional neural network with saliency optimization for picking 被引量:1
12
作者 CHEN Jinbo WANG Zhiheng LI Hengyu 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2018年第6期1300-1307,共8页
This paper concerns the problem of object segmentation in real-time for picking system. A region proposal method inspired by human glance based on the convolutional neural network is proposed to select promising regio... This paper concerns the problem of object segmentation in real-time for picking system. A region proposal method inspired by human glance based on the convolutional neural network is proposed to select promising regions, allowing more processing is reserved only for these regions. The speed of object segmentation is significantly improved by the region proposal method.By the combination of the region proposal method based on the convolutional neural network and superpixel method, the category and location information can be used to segment objects and image redundancy is significantly reduced. The processing time is reduced considerably by this to achieve the real time. Experiments show that the proposed method can segment the interested target object in real time on an ordinary laptop. 展开更多
关键词 convolutional neural network object detection object segmentation superpixel saliency optimization
在线阅读 下载PDF
Deep convolutional neural network for meteorology target detection in airborne weather radar images 被引量:3
13
作者 YU Chaopeng XIONG Wei +1 位作者 LI Xiaoqing DONG Lei 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2023年第5期1147-1157,共11页
Considering the problem that the scattering echo images of airborne Doppler weather radar are often reduced by ground clutters,the accuracy and confidence of meteorology target detection are reduced.In this paper,a de... Considering the problem that the scattering echo images of airborne Doppler weather radar are often reduced by ground clutters,the accuracy and confidence of meteorology target detection are reduced.In this paper,a deep convolutional neural network(DCNN)is proposed for meteorology target detection and ground clutter suppression with a large collection of airborne weather radar images as network input.For each weather radar image,the corresponding digital elevation model(DEM)image is extracted on basis of the radar antenna scan-ning parameters and plane position,and is further fed to the net-work as a supplement for ground clutter suppression.The fea-tures of actual meteorology targets are learned in each bottle-neck module of the proposed network and convolved into deeper iterations in the forward propagation process.Then the network parameters are updated by the back propagation itera-tion of the training error.Experimental results on the real mea-sured images show that our proposed DCNN outperforms the counterparts in terms of six evaluation factors.Meanwhile,the network outputs are in good agreement with the expected mete-orology detection results(labels).It is demonstrated that the pro-posed network would have a promising meteorology observa-tion application with minimal effort on network variables or parameter changes. 展开更多
关键词 meteorology target detection ground clutter sup-pression weather radar images convolutional neural network(CNN)
在线阅读 下载PDF
Uplink NOMA signal transmission with convolutional neural networks approach 被引量:3
14
作者 LIN Chuan CHANG Qing LI Xianxu 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2020年第5期890-898,共9页
Non-orthogonal multiple access(NOMA), featuring high spectrum efficiency, massive connectivity and low latency, holds immense potential to be a novel multi-access technique in fifth-generation(5G) communication. Succe... Non-orthogonal multiple access(NOMA), featuring high spectrum efficiency, massive connectivity and low latency, holds immense potential to be a novel multi-access technique in fifth-generation(5G) communication. Successive interference cancellation(SIC) is proved to be an effective method to detect the NOMA signal by ordering the power of received signals and then decoding them. However, the error accumulation effect referred to as error propagation is an inevitable problem. In this paper,we propose a convolutional neural networks(CNNs) approach to restore the desired signal impaired by the multiple input multiple output(MIMO) channel. Especially in the uplink NOMA scenario,the proposed method can decode multiple users' information in a cluster instantaneously without any traditional communication signal processing steps. Simulation experiments are conducted in the Rayleigh channel and the results demonstrate that the error performance of the proposed learning system outperforms that of the classic SIC detection. Consequently, deep learning has disruptive potential to replace the conventional signal detection method. 展开更多
关键词 non-orthogonal multiple access(NOMA) deep learning(DL) convolutional neural networks(CNNs) signal detection
在线阅读 下载PDF
Seismic Convolution Simulation and Its Analysis for Porous Media
15
作者 Ruixin Li,Xinwu Huang School of Engineering & Technology,China University of Geosciences(Beijing),Beijing 100083,China. 《地学前缘》 EI CAS CSCD 北大核心 2009年第S1期288-288,共1页
Convolution is an important component of the AVO forward simulation model.It handles the original information such as the earth response,which is very helpful to reduce and eliminate the multiplicity of inversion.Util... Convolution is an important component of the AVO forward simulation model.It handles the original information such as the earth response,which is very helpful to reduce and eliminate the multiplicity of inversion.Utilizing it,we can accurately describe the thickness of reservoir and its geometry,and then estimate the changes of the reservoir’s physical properties precisely.We handled the porous 展开更多
关键词 convolution model WAVELET porous media REFLECTION COEFFICIENT
在线阅读 下载PDF
High-resolution reconstruction of the ablative RT instability flowfield via convolutional neural networks
16
作者 Xia Zhiyang Kuang Yuanyuan +1 位作者 Lu Yan Yang Ming 《强激光与粒子束》 CAS CSCD 北大核心 2024年第12期42-49,共8页
High-resolution flow field data has important applications in meteorology,aerospace engineering,high-energy physics and other fields.Experiments and numerical simulations are two main ways to obtain high-resolution fl... High-resolution flow field data has important applications in meteorology,aerospace engineering,high-energy physics and other fields.Experiments and numerical simulations are two main ways to obtain high-resolution flow field data,while the high experiment cost and computing resources for simulation hinder the specificanalysis of flow field evolution.With the development of deep learning technology,convolutional neural networks areused to achieve high-resolution reconstruction of the flow field.In this paper,an ordinary convolutional neuralnetwork and a multi-time-path convolutional neural network are established for the ablative Rayleigh-Taylorinstability.These two methods can reconstruct the high-resolution flow field in just a few seconds,and further greatlyenrich the application of high-resolution reconstruction technology in fluid instability.Compared with the ordinaryconvolutional neural network,the multi-time-path convolutional neural network model has smaller error and canrestore more details of the flow field.The influence of low-resolution flow field data obtained by the two poolingmethods on the convolutional neural networks model is also discussed. 展开更多
关键词 convolutional neural networks ablative Rayleigh-Taylor instability high-resolutionreconstruction multi-time-path pooling
在线阅读 下载PDF
A multi-source image fusion algorithm based on gradient regularized convolution sparse representation
17
作者 WANG Jian QIN Chunxia +2 位作者 ZHANG Xiufei YANG Ke REN Ping 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2020年第3期447-459,共13页
Image fusion based on the sparse representation(SR)has become the primary research direction of the transform domain method.However,the SR-based image fusion algorithm has the characteristics of high computational com... Image fusion based on the sparse representation(SR)has become the primary research direction of the transform domain method.However,the SR-based image fusion algorithm has the characteristics of high computational complexity and neglecting the local features of an image,resulting in limited image detail retention and a high registration misalignment sensitivity.In order to overcome these shortcomings and the noise existing in the image of the fusion process,this paper proposes a new signal decomposition model,namely the multi-source image fusion algorithm of the gradient regularization convolution SR(CSR).The main innovation of this work is using the sparse optimization function to perform two-scale decomposition of the source image to obtain high-frequency components and low-frequency components.The sparse coefficient is obtained by the gradient regularization CSR model,and the sparse coefficient is taken as the maximum value to get the optimal high frequency component of the fused image.The best low frequency component is obtained by using the fusion strategy of the extreme or the average value.The final fused image is obtained by adding two optimal components.Experimental results demonstrate that this method greatly improves the ability to maintain image details and reduces image registration sensitivity. 展开更多
关键词 gradient regularization convolution sparse representation(CSR) image fusion
在线阅读 下载PDF
Convolutional Sparse Coding in Gradient Domain for MRI Reconstruction 被引量:1
18
作者 Jiaojiao Xiong Hongyang Lu +1 位作者 Minghui Zhang Qiegen Liu 《自动化学报》 EI CSCD 北大核心 2017年第10期1841-1849,共9页
关键词 梯度图像 稀疏编码 MRI 卷积 应用 分割图像 空间采样 磁共振成像
在线阅读 下载PDF
基于多方位感知深度融合检测头的目标检测算法
19
作者 包晓安 彭书友 +3 位作者 张娜 涂小妹 张庆琪 吴彪 《浙江大学学报(工学版)》 北大核心 2026年第1期32-42,共11页
针对传统目标检测头难以有效捕捉全局信息的问题,提出基于多方位感知深度融合检测头的目标检测算法.通过在检测头部分设计高效双轴窗口注意力编码器(EDWE)模块,使网络能够深度融合捕获到的全局信息与局部信息;在特征金字塔结构之后使用... 针对传统目标检测头难以有效捕捉全局信息的问题,提出基于多方位感知深度融合检测头的目标检测算法.通过在检测头部分设计高效双轴窗口注意力编码器(EDWE)模块,使网络能够深度融合捕获到的全局信息与局部信息;在特征金字塔结构之后使用重参化大核卷积(RLK)模块,减小来自主干网络的特征空间差异,增强网络对中小型数据集的适应性;引入编码器选择保留模块(ESM),选择性地累积来自EDWE模块的输出,优化反向传播.实验结果表明,在规模较大的MS-COCO2017数据集上,所提算法应用于常见模型RetinaNet、FCOS、ATSS时使AP分别提升了2.9、2.6、3.4个百分点;在规模较小的PASCAL VOC2007数据集上,所提算法使3种模型的AP分别实现了1.3、1.0和1.1个百分点的提升.通过EDWE、RLK和ESM模块的协同作用,所提算法有效提升了目标检测精度,在不同规模的数据集上均展现了显著的性能优势. 展开更多
关键词 检测头 目标检测 Transformer编码器 深度融合 大核卷积
在线阅读 下载PDF
鄱阳湖水华蓝藻的一个新记录种--旋折平裂藻(Merismopedia convoluta Breb.Kützing) 被引量:6
20
作者 徐彩平 李守淳 +1 位作者 柴文波 陈宇炜 《湖泊科学》 CAS CSCD 北大核心 2012年第4期643-646,共4页
2011年8月对鄱阳湖进行全湖大采样中发现了一种鲜见报道的水华蓝藻种类——旋折平裂藻(Merismopedia convolute Breb.Kützing).本文对该种的主要形态特征进行描述,并介绍它在鄱阳湖内的分布区域和生境.
关键词 旋折平裂藻 鄱阳湖 水华
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部