The problem of two order statistics detection schemes for the detection of a spatially distributed target in white Gaussian noise are studied.When the number of strong scattering cells is known,we first show an optima...The problem of two order statistics detection schemes for the detection of a spatially distributed target in white Gaussian noise are studied.When the number of strong scattering cells is known,we first show an optimal detector,which requires many processing channels.The structure of such optimal detector is complex.Therefore,a simpler quasi-optimal detector is then introduced.The quasi-optimal detector,called the strong scattering cells’ number dependent order statistics(SND-OS) detector,takes the form of an average of maximum strong scattering cells with a known number.If the number of strong scattering cells is unknown in real situation,the multi-channel order statistics(MC-OS) detector is used.In each channel,a various number of maximums scattered from target are averaged.Then,the false alarm probability analysis and thresholds sets for each channel are given,following the detection results presented by means of Monte Carlo simulation strategy based on simulated target model and three measured targets.In particular,the theoretical analysis and simulation results highlight that the MC-OS detector can efficiently detect range-spread targets in white Gaussian noise.展开更多
To study multi-radio multi-channel (MR-MC) Ad Hoc networks based on 802.11, an efficient cross-layer routing protocol with the function of joint channel assignment, called joint channel assignment and cross-layer ro...To study multi-radio multi-channel (MR-MC) Ad Hoc networks based on 802.11, an efficient cross-layer routing protocol with the function of joint channel assignment, called joint channel assignment and cross-layer routing (JCACR), is presented. Firstly, this paper introduces a new concept called channel utilization percentage (CUP), which is for measuring the contention level of different channels in a node’s neighborhood, and deduces its optimal value for determining whether a channel is overloaded or not. Then, a metric parameter named channel selection metric (CSM) is designed, which actually reffects not only the channel status but also corresponding node’s capacity to seize it. JCACR evaluates channel assignment by CSM, performs a local optimization by assigning each node a channel with the smaller CSM value, and changes the working channel dynamically when the channel is overloaded. Therefore, the network load balancing can be achieved. In addition, simulation shows that, when compared with the protocol of weighted cumulative expected transfer time (WCETT), the new protocol can improve the network throughput and reduce the end-to-end average delay with fewer overheads.展开更多
Although a various of existing techniques are able to improve the performance of detection of the weak interesting sig- nal, how to adaptively and efficiently attenuate the intricate noises especially in the case of n...Although a various of existing techniques are able to improve the performance of detection of the weak interesting sig- nal, how to adaptively and efficiently attenuate the intricate noises especially in the case of no available reference noise signal is still the bottleneck to be overcome. According to the characteristics of sonar arrays, a multi-channel differencing method is presented to provide the prerequisite reference noise. However, the ingre- dient of obtained reference noise is too complicated to be used to effectively reduce the interference noise only using the clas- sical linear cancellation methods. Hence, a novel adaptive noise cancellation method based on the multi-kernel normalized least- mean-square algorithm consisting of weighted linear and Gaussian kernel functions is proposed, which allows to simultaneously con- sider the cancellation of linear and nonlinear components in the reference noise. The simulation results demonstrate that the out- put signal-to-noise ratio (SNR) of the novel multi-kernel adaptive filtering method outperforms the conventional linear normalized least-mean-square method and the mono-kernel normalized least- mean-square method using the realistic noise data measured in the lake experiment.展开更多
For multi-channel synthetic aperture radar(SAR) systems, since the minimum antenna area constraint is eliminated,wide swath and high resolution SAR image can be achieved.However, the unavoidable array errors, consis...For multi-channel synthetic aperture radar(SAR) systems, since the minimum antenna area constraint is eliminated,wide swath and high resolution SAR image can be achieved.However, the unavoidable array errors, consisting of channel gainphase mismatch and position uncertainty, significantly degrade the performance of such systems. An iteration-free method is proposed to simultaneously estimate position and gain-phase errors.In our research, the steering vectors corresponding to a pair of Doppler bins within the same range bin are studied in terms of their rotational relationships. The method is based on the fact that the rotational matrix only depends on the position errors and the frequency spacing between the paired Doppler bins but is independent of gain-phase error. Upon combining the projection matrices corresponding to the paired Doppler bins, the position errors are directly obtained in terms of extracting the rotational matrix in a least squares framework. The proposed method, when used in conjunction with the self-calibration algorithm, performs stably as well as has less computational load, compared with the conventional methods. Simulations reveal that the proposed method behaves better than the conventional methods even when the signal-to-noise ratio(SNR) is low.展开更多
A new approach for improving the throughputs of multi- channel packet radio systems is proposed. Based on the charac- teristics of multi-code CDMA technology, the scheme factitiously improves the transmission bit rate...A new approach for improving the throughputs of multi- channel packet radio systems is proposed. Based on the charac- teristics of multi-code CDMA technology, the scheme factitiously improves the transmission bit rate of a terminal by compressing the packet transmission time and thereby increases the number of the orthogonal spreading codes used by the terminal. By this means, the average interference level of the system is reduced and the system capacity is improved. Simulation results show that the proposed scheme exhibits larger throughput compared with the traditional multi-code CDMA slotted Aloha systems.展开更多
Synthetic aperture radar (SAR) systems have become an important tool for fine-resolution mapping and other remote sensing operations. The multi-channel SAR ground moving-target indication (GMTI) must process its d...Synthetic aperture radar (SAR) systems have become an important tool for fine-resolution mapping and other remote sensing operations. The multi-channel SAR ground moving-target indication (GMTI) must process its data to produce not only the image of surveillance area but also the information of the ground moving-targets. The topic of moving-target detection in clutter has been extensively studied, and there are many methods that are used to detect moving targets, such as displaced phase center antenna (DPCA) method, along-track interfero-metric (ATI) phase, space-time adaptive processing (STAP), or some other metrics. A canonical framework is proposed that encompasses all the multi-channel SAR-GMT methods, namely, DPCA and ATI. The statistical test metric for multi-channel SAR-GMTI is established in a simple form, via the definition of the complex central Wishart distribution, to deduce the statistics of the test metric, and the probability distribution of the test metric for multichannel SAR-GMTI has the complex central Wishart distribution of 1×1 case, namely the X^2 distribution. The theory foundation offers the possibility to construct the united multi-channel SAR-GMTI detector, and derives the constant false alarm rate (CFAR) detector tests for separating moving targets from clutter.展开更多
A robust decentralized H∞ control problem was considered for uncertain multi-channel discrete-time systems with time-delay. The uncertainties were assumed to be time-invariant, norm-bounded, and exist in the system, ...A robust decentralized H∞ control problem was considered for uncertain multi-channel discrete-time systems with time-delay. The uncertainties were assumed to be time-invariant, norm-bounded, and exist in the system, the time-delay and the output matrices. Dynamic output feedback was focused on. A sufficient condition for the multi-channel uncertain discrete time-delay system to be robustly stabilizable with a specified disturbance attenuation level was derived based on the theorem of Lyapunov stability theory. By setting the Lyapunov matrix as block diagonal appropriately according to the desired order of the controller, the problem was reduced to a linear matrix inequality (LMI) which is sufficient to existence condition but much more tractable. An example was given to show the efficiency of this method.展开更多
Multiple channels are available for use in IEEE 802.11.Multiple channels can increase the available network's capacity,and how to efficiently assign these available channels to optimize the network performance is ...Multiple channels are available for use in IEEE 802.11.Multiple channels can increase the available network's capacity,and how to efficiently assign these available channels to optimize the network performance is a challenge.We survey current techniques to solve the problem,and category the techniques single-radio,multi-radio,cross-layer multi-channel assignment.This paper also discusses some interesting issues at last.展开更多
针对信号在光纤中传输时受到外部环境因素影响,导致传输的光载射频信号相位出现抖动,影响多路信号相干叠加后的信噪比问题,提出一种基于微波光子信号稳相传输的多路信号增强技术。通过设计包含相位测量、控制与调节模块的稳相传输系统,...针对信号在光纤中传输时受到外部环境因素影响,导致传输的光载射频信号相位出现抖动,影响多路信号相干叠加后的信噪比问题,提出一种基于微波光子信号稳相传输的多路信号增强技术。通过设计包含相位测量、控制与调节模块的稳相传输系统,结合闭环测量和精度调节(粗调10 ps、精调0.1 ps),实现光载射频信号的相位稳定;进一步搭建多路信号传输系统,采用匹配滤波和相位精确合成方法,完成3路信号的相干叠加。实验结果表明:在1.7、2.3 GHz频率下,叠加后的信号功率较单路信号分别提升4.5、5.1 d B,信噪比分别改善2.8、3.44 d B。展开更多
基金supported by the Major Program of National Natural Science Foundation of China (10990012)the National Natural Science Foundation of China (61201296,61271024)+1 种基金the Fundamental Research Funds for the Central Universities (K5051202037)Guangxi Key Lab of Wireless Wideband Communication & Signal Processing (12205)
文摘The problem of two order statistics detection schemes for the detection of a spatially distributed target in white Gaussian noise are studied.When the number of strong scattering cells is known,we first show an optimal detector,which requires many processing channels.The structure of such optimal detector is complex.Therefore,a simpler quasi-optimal detector is then introduced.The quasi-optimal detector,called the strong scattering cells’ number dependent order statistics(SND-OS) detector,takes the form of an average of maximum strong scattering cells with a known number.If the number of strong scattering cells is unknown in real situation,the multi-channel order statistics(MC-OS) detector is used.In each channel,a various number of maximums scattered from target are averaged.Then,the false alarm probability analysis and thresholds sets for each channel are given,following the detection results presented by means of Monte Carlo simulation strategy based on simulated target model and three measured targets.In particular,the theoretical analysis and simulation results highlight that the MC-OS detector can efficiently detect range-spread targets in white Gaussian noise.
基金supported by the National Natural Science Foundationof China (60873195 61070220)+3 种基金the Natural Science Foundation of Anhui Province (070412049)the Outstanding Young Teacher Foundation of Anhui Higher Education Institutions of China (2009SQRZ167)the Natural Science Foundation of Anhui Higher Education Institutions of China (KJ2009B114)the Open Project Program of Engineering Research Center of Safety Critical Industry Measure and Control Technology (SCIMCT0802)
文摘To study multi-radio multi-channel (MR-MC) Ad Hoc networks based on 802.11, an efficient cross-layer routing protocol with the function of joint channel assignment, called joint channel assignment and cross-layer routing (JCACR), is presented. Firstly, this paper introduces a new concept called channel utilization percentage (CUP), which is for measuring the contention level of different channels in a node’s neighborhood, and deduces its optimal value for determining whether a channel is overloaded or not. Then, a metric parameter named channel selection metric (CSM) is designed, which actually reffects not only the channel status but also corresponding node’s capacity to seize it. JCACR evaluates channel assignment by CSM, performs a local optimization by assigning each node a channel with the smaller CSM value, and changes the working channel dynamically when the channel is overloaded. Therefore, the network load balancing can be achieved. In addition, simulation shows that, when compared with the protocol of weighted cumulative expected transfer time (WCETT), the new protocol can improve the network throughput and reduce the end-to-end average delay with fewer overheads.
基金supported by the National Natural Science Foundation of China(6100115361271415)+2 种基金the Opening Research Foundation of State Key Laboratory of Underwater Information Processing and Control(9140C231002130C23085)the Fundamental Research Funds for the Central Universities(3102014JCQ010103102014ZD0041)
文摘Although a various of existing techniques are able to improve the performance of detection of the weak interesting sig- nal, how to adaptively and efficiently attenuate the intricate noises especially in the case of no available reference noise signal is still the bottleneck to be overcome. According to the characteristics of sonar arrays, a multi-channel differencing method is presented to provide the prerequisite reference noise. However, the ingre- dient of obtained reference noise is too complicated to be used to effectively reduce the interference noise only using the clas- sical linear cancellation methods. Hence, a novel adaptive noise cancellation method based on the multi-kernel normalized least- mean-square algorithm consisting of weighted linear and Gaussian kernel functions is proposed, which allows to simultaneously con- sider the cancellation of linear and nonlinear components in the reference noise. The simulation results demonstrate that the out- put signal-to-noise ratio (SNR) of the novel multi-kernel adaptive filtering method outperforms the conventional linear normalized least-mean-square method and the mono-kernel normalized least- mean-square method using the realistic noise data measured in the lake experiment.
基金supported by the Natural Science Basic Research Plan in Shaanxi Province of China(2015JM6278)the China Postdoctoral Science Foundation(2015M582586)the China Academy of Space Technology Innovation Fund
文摘For multi-channel synthetic aperture radar(SAR) systems, since the minimum antenna area constraint is eliminated,wide swath and high resolution SAR image can be achieved.However, the unavoidable array errors, consisting of channel gainphase mismatch and position uncertainty, significantly degrade the performance of such systems. An iteration-free method is proposed to simultaneously estimate position and gain-phase errors.In our research, the steering vectors corresponding to a pair of Doppler bins within the same range bin are studied in terms of their rotational relationships. The method is based on the fact that the rotational matrix only depends on the position errors and the frequency spacing between the paired Doppler bins but is independent of gain-phase error. Upon combining the projection matrices corresponding to the paired Doppler bins, the position errors are directly obtained in terms of extracting the rotational matrix in a least squares framework. The proposed method, when used in conjunction with the self-calibration algorithm, performs stably as well as has less computational load, compared with the conventional methods. Simulations reveal that the proposed method behaves better than the conventional methods even when the signal-to-noise ratio(SNR) is low.
基金supported by the National Basic Research Program of China(973 Program)(2007CB310607)the National Natural Science Foundation of China(60772061)+1 种基金the Natural Science Foundation for the Universities in Jiangsu Province(06KJB51007806KJA51001)
文摘A new approach for improving the throughputs of multi- channel packet radio systems is proposed. Based on the charac- teristics of multi-code CDMA technology, the scheme factitiously improves the transmission bit rate of a terminal by compressing the packet transmission time and thereby increases the number of the orthogonal spreading codes used by the terminal. By this means, the average interference level of the system is reduced and the system capacity is improved. Simulation results show that the proposed scheme exhibits larger throughput compared with the traditional multi-code CDMA slotted Aloha systems.
基金the National Natural Science Foundation of China (60472097 and 60502054)
文摘Synthetic aperture radar (SAR) systems have become an important tool for fine-resolution mapping and other remote sensing operations. The multi-channel SAR ground moving-target indication (GMTI) must process its data to produce not only the image of surveillance area but also the information of the ground moving-targets. The topic of moving-target detection in clutter has been extensively studied, and there are many methods that are used to detect moving targets, such as displaced phase center antenna (DPCA) method, along-track interfero-metric (ATI) phase, space-time adaptive processing (STAP), or some other metrics. A canonical framework is proposed that encompasses all the multi-channel SAR-GMT methods, namely, DPCA and ATI. The statistical test metric for multi-channel SAR-GMTI is established in a simple form, via the definition of the complex central Wishart distribution, to deduce the statistics of the test metric, and the probability distribution of the test metric for multichannel SAR-GMTI has the complex central Wishart distribution of 1×1 case, namely the X^2 distribution. The theory foundation offers the possibility to construct the united multi-channel SAR-GMTI detector, and derives the constant false alarm rate (CFAR) detector tests for separating moving targets from clutter.
基金Project(60634020) supported by the National Natural Science Foundation of ChinaProject(07JJ6138) supported by Natural Science Foundation of Hunan Province, ChinaProject(20060390883) supported by the Postdoctoral Science Foundation of China
文摘A robust decentralized H∞ control problem was considered for uncertain multi-channel discrete-time systems with time-delay. The uncertainties were assumed to be time-invariant, norm-bounded, and exist in the system, the time-delay and the output matrices. Dynamic output feedback was focused on. A sufficient condition for the multi-channel uncertain discrete time-delay system to be robustly stabilizable with a specified disturbance attenuation level was derived based on the theorem of Lyapunov stability theory. By setting the Lyapunov matrix as block diagonal appropriately according to the desired order of the controller, the problem was reduced to a linear matrix inequality (LMI) which is sufficient to existence condition but much more tractable. An example was given to show the efficiency of this method.
基金spported by the National Natural Science Foundation of China ( No. 60973139, 60773041 )Postdoctoral Foundation (No. 0801019C,20090451240, 20090451241)+2 种基金Science&Technology Innovation Fund for Higher Education Institutions of Jiangsu Province( No.CX09B_153Z,CX08B-086Z )Six Projects Sponsoring Talent Summits of Jiangsu Province(No. 2008118)the project of NJUPT(No.NY207135)
文摘Multiple channels are available for use in IEEE 802.11.Multiple channels can increase the available network's capacity,and how to efficiently assign these available channels to optimize the network performance is a challenge.We survey current techniques to solve the problem,and category the techniques single-radio,multi-radio,cross-layer multi-channel assignment.This paper also discusses some interesting issues at last.
文摘针对信号在光纤中传输时受到外部环境因素影响,导致传输的光载射频信号相位出现抖动,影响多路信号相干叠加后的信噪比问题,提出一种基于微波光子信号稳相传输的多路信号增强技术。通过设计包含相位测量、控制与调节模块的稳相传输系统,结合闭环测量和精度调节(粗调10 ps、精调0.1 ps),实现光载射频信号的相位稳定;进一步搭建多路信号传输系统,采用匹配滤波和相位精确合成方法,完成3路信号的相干叠加。实验结果表明:在1.7、2.3 GHz频率下,叠加后的信号功率较单路信号分别提升4.5、5.1 d B,信噪比分别改善2.8、3.44 d B。