This review paper examines the various types of electrical generators used to convert wave energy into electrical energy.The focus is on both linear and rotary generators,including their design principles,operational ...This review paper examines the various types of electrical generators used to convert wave energy into electrical energy.The focus is on both linear and rotary generators,including their design principles,operational efficiencies,and technological advancements.Linear generators,such as Induction,permanent magnet synchronous,and switched reluctance types,are highlighted for their direct conversion capability,eliminating the need for mechanical gearboxes.Rotary Induction generators,permanent magnet synchronous generators,and doubly-fed Induction generators are evaluated for their established engineering principles and integration with existing grid infrastructure.The paper discusses the historical development,environmental benefits,and ongoing advancements in wave energy technologies,emphasizing the increasing feasibility and scalability of wave energy as a renewable source.Through a comprehensive analysis,this review provides insights into the current state and future prospects of electrical generators in wave energy conversion,underscoring their potential to significantly reduce reliance on fossil fuels and mitigate environmental impacts.展开更多
With the rapid development of large-scale regional interconnected power grids,the risk of cascading failures under extreme condi-tions,such as natural disasters and military strikes,has increased significantly.To enha...With the rapid development of large-scale regional interconnected power grids,the risk of cascading failures under extreme condi-tions,such as natural disasters and military strikes,has increased significantly.To enhance the response capability of power systems to extreme events,this study focuses on a method for generator coherency detection.To overcome the shortcomings of the traditional slow coherency method,this paper introduces a novel coherent group identification algorithm based on the theory of nonlinear dynam-ical systems.By analyzing the changing trend of the Euclidean norm of the state variable derivatives in the reduced system,the algorithm can accurately identify the magnitude of the disturbances.Based on the slow coherency methods,the algorithm can correctly recognize coherent generator groups by analyzing system characteristics under varying disturbance magnitudes.This improvement enhances the applicability and accuracy of the coherency detection algorithm under extreme conditions,providing support for emergency control and protection in the power system.Simulations and comparison analyses on IEEE 39-bus system are conducted to validate the accuracy and superiority of the proposed coherent generator group identification method under extreme conditions.展开更多
In the quantum Monte Carlo(QMC)method,the pseudo-random number generator(PRNG)plays a crucial role in determining the computation time.However,the hidden structure of the PRNG may lead to serious issues such as the br...In the quantum Monte Carlo(QMC)method,the pseudo-random number generator(PRNG)plays a crucial role in determining the computation time.However,the hidden structure of the PRNG may lead to serious issues such as the breakdown of the Markov process.Here,we systematically analyze the performance of different PRNGs on the widely used QMC method known as the stochastic series expansion(SSE)algorithm.To quantitatively compare them,we introduce a quantity called QMC efficiency that can effectively reflect the efficiency of the algorithms.After testing several representative observables of the Heisenberg model in one and two dimensions,we recommend the linear congruential generator as the best choice of PRNG.Our work not only helps improve the performance of the SSE method but also sheds light on the other Markov-chain-based numerical algorithms.展开更多
Moisture-enabled electricity(ME)is a method of converting the potential energy of water in the external environment into electrical energy through the interaction of functional materials with water molecules and can b...Moisture-enabled electricity(ME)is a method of converting the potential energy of water in the external environment into electrical energy through the interaction of functional materials with water molecules and can be directly applied to energy harvesting and signal expression.However,ME can be unreliable in numerous applications due to its sluggish response to moisture,thus sacrificing the value of fast energy harvesting and highly accurate information representation.Here,by constructing a moisture-electric-moisture-sensitive(ME-MS)heterostructure,we develop an efficient ME generator with ultra-fast electric response to moisture achieved by triggering Grotthuss protons hopping in the sensitized ZnO,which modulates the heterostructure built-in interfacial potential,enables quick response(0.435 s),an unprecedented ultra-fast response rate of 972.4 mV s^(−1),and a durable electrical signal output for 8 h without any attenuation.Our research provides an efficient way to generate electricity and important insight for a deeper understanding of the mechanisms of moisture-generated carrier migration in ME generator,which has a more comprehensive working scene and can serve as a typical model for human health monitoring and smart medical electronics design.展开更多
On 15 February,OpenAI released its first video generation model"Sora".This is another disruptive work of the company after ChatGPT.It is reported that this AI video model can generate HD videos up to 1 minut...On 15 February,OpenAI released its first video generation model"Sora".This is another disruptive work of the company after ChatGPT.It is reported that this AI video model can generate HD videos up to 1 minute long based on the text given by the user.For the time being,its impact on the textile industry may be indirect,but it may also have some interesting and practical effects as it is developed and refined in the future.Here are some of the effects that Sora may have on the textile industry.展开更多
We construct the quantum fields presentation of the generalized universal character and the generalized B-type universal character,and by acting the quantum fields presentations to the constant 1,the generating functi...We construct the quantum fields presentation of the generalized universal character and the generalized B-type universal character,and by acting the quantum fields presentations to the constant 1,the generating functions are derived.Furthermore,we introduce two integrable systems known as the generalized UC(GUC)hierarchy and the generalized Btype UC(GBUC)hierarchy satisfied by the generalized universal character and the generalized B-type universal character,respectively.Based on infinite sequences of complex numbers,we further establish the multiparameter generalized universal character and the multiparameter generalized B-type universal character,which have been proved to be solutions of the GUC hierarchy and the GBUC hierarchy,respectively.展开更多
We propose a scheme for generating high-quality single-photon sources utilizing the conventional photon blockade(CPB)effect in a cavity optomagnonic system with Kerr nonlinearity.The realization of the CPB effect depe...We propose a scheme for generating high-quality single-photon sources utilizing the conventional photon blockade(CPB)effect in a cavity optomagnonic system with Kerr nonlinearity.The realization of the CPB effect depends on both the Kerr nonlinearity and Kerr-like nonlinearity of the optical cavity,which is converted using magneto-optical coupling.The CPB effect can be realized in a cavity optomagnonic system with weak magneto-optical coupling by modulating the strength of the Kerr nonlinearity.Notably,our scheme supports photon blockade in both the strong and weak Kerr nonlinear regimes,which broadens the range of experimental parameters.Furthermore,we explored the parameter regimes where the CPB effect could not be achieved because of the combined effects of the magneto-optical coupling and Kerr nonlinearity.We also determined the optimal driving amplitude region for generating high-quality single-photon sources.This work not only provides a novel route for realizing the CPB effect but also establishes a versatile platform for producing single-photon sources with high purity and brightness.展开更多
In 1694,Gregory and Newton proposed the problem to determine the kissing number of a rigid material ball.This problem and its higher dimensional generalization have been studied by many mathematicians,including Minkow...In 1694,Gregory and Newton proposed the problem to determine the kissing number of a rigid material ball.This problem and its higher dimensional generalization have been studied by many mathematicians,including Minkowski,van der Waerden,Hadwiger,Swinnerton-Dyer,Watson,Levenshtein,Odlyzko,Sloane and Musin.In this paper,we introduce and study a further generalization of the kissing numbers for convex bodies and obtain some exact results,in particular for balls in dimensions three,four and eight.展开更多
Full waveform inversion(FWI)has showed great potential in the detection of musculoskeletal disease.However,FWI is an ill-posed inverse problem and has a high requirement on the initial model during the imaging process...Full waveform inversion(FWI)has showed great potential in the detection of musculoskeletal disease.However,FWI is an ill-posed inverse problem and has a high requirement on the initial model during the imaging process.An inaccurate initial model may lead to local minima in the inversion and unexpected imaging results caused by cycle-skipping phenomenon.Deep learning methods have been applied in musculoskeletal imaging,but need a large amount of data for training.Inspired by work related to generative adversarial networks with physical informed constrain,we proposed a method named as bone ultrasound imaging with physics informed generative adversarial network(BUIPIGAN)to achieve unsupervised multi-parameter imaging for musculoskeletal tissues,focusing on speed of sound(SOS)and density.In the in-silico experiments using a ring array transducer,conventional FWI methods and BUIPIGAN were employed for multiparameter imaging of two musculoskeletal tissue models.The results were evaluated based on visual appearance,structural similarity index measure(SSIM),signal-to-noise ratio(SNR),and relative error(RE).For SOS imaging of the tibia–fibula model,the proposed BUIPIGAN achieved accurate SOS imaging with best performance.The specific quantitative metrics for SOS imaging were SSIM 0.9573,SNR 28.70 dB,and RE 5.78%.For the multi-parameter imaging of the tibia–fibula and human forearm,the BUIPIGAN successfully reconstructed SOS and density distributions with SSIM above 94%,SNR above 21 dB,and RE below 10%.The BUIPIGAN also showed robustness across various noise levels(i.e.,30 dB,10 dB).The results demonstrated that the proposed BUIPIGAN can achieve high-accuracy SOS and density imaging,proving its potential for applications in musculoskeletal ultrasound imaging.展开更多
In this paper,we study composition operators on weighted Bergman spaces of Dirichlet series.We first establish some Littlewood-type inequalities for generalized mean counting functions.Then we give sufficient conditio...In this paper,we study composition operators on weighted Bergman spaces of Dirichlet series.We first establish some Littlewood-type inequalities for generalized mean counting functions.Then we give sufficient conditions for a composition operator with zero characteristic to be bounded or compact on weighted Bergman spaces of Dirichlet series.The corresponding sufficient condition for compactness in the case of positive characteristics is also obtained.展开更多
The increasing demand for radioauthorized applications in the 6G era necessitates enhanced monitoring and management of radio resources,particularly for precise control over the electromagnetic environment.The radio m...The increasing demand for radioauthorized applications in the 6G era necessitates enhanced monitoring and management of radio resources,particularly for precise control over the electromagnetic environment.The radio map serves as a crucial tool for describing signal strength distribution within the current electromagnetic environment.However,most existing algorithms rely on sparse measurements of radio strength,disregarding the impact of building information.In this paper,we propose a spectrum cartography(SC)algorithm that eliminates the need for relying on sparse ground-based radio strength measurements by utilizing a satellite network to collect data on buildings and transmitters.Our algorithm leverages Pix2Pix Generative Adversarial Network(GAN)to construct accurate radio maps using transmitter information within real geographical environments.Finally,simulation results demonstrate that our algorithm exhibits superior accuracy compared to previously proposed methods.展开更多
Panoramic images, offering a 360-degree view, are essential in virtual reality(VR) and augmented reality(AR), enhancing realism with high-quality textures. However, acquiring complete and high-quality panoramic textur...Panoramic images, offering a 360-degree view, are essential in virtual reality(VR) and augmented reality(AR), enhancing realism with high-quality textures. However, acquiring complete and high-quality panoramic textures is challenging. This paper introduces a method using generative adversarial networks(GANs) and the contrastive language-image pretraining(CLIP) model to restore and control texture in panoramic images. The GAN model captures complex structures and maintains consistency, while CLIP enables fine-grained texture control via semantic text-image associations. GAN inversion optimizes latent codes for precise texture details. The resulting low dynamic range(LDR) images are converted to high dynamic range(HDR) using the Blender engine for seamless texture blending. Experimental results demonstrate the effectiveness and flexibility of this method in panoramic texture restoration and generation.展开更多
针对粒子滤波计算量大、硬件实现困难的问题,提出了一种用于纯方位跟踪的简化粒子滤波算法,并通过Xilinx System Generator在FPGA上实现。首先,对通用粒子滤波算法进行适当简化,使其减少计算量并且易于硬件实现;其次,采用模块化设计,利...针对粒子滤波计算量大、硬件实现困难的问题,提出了一种用于纯方位跟踪的简化粒子滤波算法,并通过Xilinx System Generator在FPGA上实现。首先,对通用粒子滤波算法进行适当简化,使其减少计算量并且易于硬件实现;其次,采用模块化设计,利用状态机综合并实现各个模块的时序控制;最后,转换为硬件语言,完成硬件仿真。仿真结果表明,所设计的简化粒子滤波算法各个模块工作正常,且具有较好的跟踪精度及运行速度,可用于非线性、非高斯系统的粒子滤波实现,对于粒子滤波的硬件实现方面具有一定的参考价值。展开更多
To minimize the reactive power of the converter of the control winding in the novel dual stator-winding induction generator based on the PWM converter, design features of the induction generator with a rectified load ...To minimize the reactive power of the converter of the control winding in the novel dual stator-winding induction generator based on the PWM converter, design features of the induction generator with a rectified load are proposed. The optimization method of excited capacitors to minimize the reactive power of the control winding at a variable speed is given. The calculation capacity of the machine with a diode bridge rectifier load is proposed. To achieve global searching, the integrated method with the improved real-coded genetic algorithm and the twodimensional finite element method (FEM) is introduced. Design results of the sample show that reactive power can be reduced by the method, and the converter capacity can be decreased to 1/3 of output rated power at the speed ratio of 1 : 3, thus reducing the volume and the mass of the inverter.展开更多
文摘This review paper examines the various types of electrical generators used to convert wave energy into electrical energy.The focus is on both linear and rotary generators,including their design principles,operational efficiencies,and technological advancements.Linear generators,such as Induction,permanent magnet synchronous,and switched reluctance types,are highlighted for their direct conversion capability,eliminating the need for mechanical gearboxes.Rotary Induction generators,permanent magnet synchronous generators,and doubly-fed Induction generators are evaluated for their established engineering principles and integration with existing grid infrastructure.The paper discusses the historical development,environmental benefits,and ongoing advancements in wave energy technologies,emphasizing the increasing feasibility and scalability of wave energy as a renewable source.Through a comprehensive analysis,this review provides insights into the current state and future prospects of electrical generators in wave energy conversion,underscoring their potential to significantly reduce reliance on fossil fuels and mitigate environmental impacts.
基金supported by National Natural Science Foundation of China(Grant No:52477133)Science and Technology Project of China Southern Power Grid(Grant No.GDKJXM20231178(036100KC23110012)+1 种基金GDKJXM20240389(030000KC24040053))Sanya Yazhou Bay Science and Technology City(Grant No:SKJC-JYRC-2024-66).
文摘With the rapid development of large-scale regional interconnected power grids,the risk of cascading failures under extreme condi-tions,such as natural disasters and military strikes,has increased significantly.To enhance the response capability of power systems to extreme events,this study focuses on a method for generator coherency detection.To overcome the shortcomings of the traditional slow coherency method,this paper introduces a novel coherent group identification algorithm based on the theory of nonlinear dynam-ical systems.By analyzing the changing trend of the Euclidean norm of the state variable derivatives in the reduced system,the algorithm can accurately identify the magnitude of the disturbances.Based on the slow coherency methods,the algorithm can correctly recognize coherent generator groups by analyzing system characteristics under varying disturbance magnitudes.This improvement enhances the applicability and accuracy of the coherency detection algorithm under extreme conditions,providing support for emergency control and protection in the power system.Simulations and comparison analyses on IEEE 39-bus system are conducted to validate the accuracy and superiority of the proposed coherent generator group identification method under extreme conditions.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.12274046,11874094,and 12147102)Chongqing Natural Science Foundation(Grant No.CSTB2022NSCQ-JQX0018)Fundamental Research Funds for the Central Universities(Grant No.2021CDJZYJH-003).
文摘In the quantum Monte Carlo(QMC)method,the pseudo-random number generator(PRNG)plays a crucial role in determining the computation time.However,the hidden structure of the PRNG may lead to serious issues such as the breakdown of the Markov process.Here,we systematically analyze the performance of different PRNGs on the widely used QMC method known as the stochastic series expansion(SSE)algorithm.To quantitatively compare them,we introduce a quantity called QMC efficiency that can effectively reflect the efficiency of the algorithms.After testing several representative observables of the Heisenberg model in one and two dimensions,we recommend the linear congruential generator as the best choice of PRNG.Our work not only helps improve the performance of the SSE method but also sheds light on the other Markov-chain-based numerical algorithms.
基金the Natural Science Foundation of Beijing Municipality(2222075)National Natural Science Foundation of China(22279010,21671020,51673026)Analysis&Testing Center,Beijing Institute of Technology.
文摘Moisture-enabled electricity(ME)is a method of converting the potential energy of water in the external environment into electrical energy through the interaction of functional materials with water molecules and can be directly applied to energy harvesting and signal expression.However,ME can be unreliable in numerous applications due to its sluggish response to moisture,thus sacrificing the value of fast energy harvesting and highly accurate information representation.Here,by constructing a moisture-electric-moisture-sensitive(ME-MS)heterostructure,we develop an efficient ME generator with ultra-fast electric response to moisture achieved by triggering Grotthuss protons hopping in the sensitized ZnO,which modulates the heterostructure built-in interfacial potential,enables quick response(0.435 s),an unprecedented ultra-fast response rate of 972.4 mV s^(−1),and a durable electrical signal output for 8 h without any attenuation.Our research provides an efficient way to generate electricity and important insight for a deeper understanding of the mechanisms of moisture-generated carrier migration in ME generator,which has a more comprehensive working scene and can serve as a typical model for human health monitoring and smart medical electronics design.
文摘On 15 February,OpenAI released its first video generation model"Sora".This is another disruptive work of the company after ChatGPT.It is reported that this AI video model can generate HD videos up to 1 minute long based on the text given by the user.For the time being,its impact on the textile industry may be indirect,but it may also have some interesting and practical effects as it is developed and refined in the future.Here are some of the effects that Sora may have on the textile industry.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.12461048 and 12061051)the Natural Science Foundation of Inner Mongolia Autonomous Region(Grant No.2023MS01003)+2 种基金the Program for Young Talents of Science and Technology in Universities of Inner Mongolia Autonomous Region(Grant No.NJYT23096)the financial support from the Program of China Scholarships Council(Grant No.202306810054)for one year study at the University of Leedsthe support of Professor Ke Wu and Professor Weizhong Zhao at Capital Normal University,China。
文摘We construct the quantum fields presentation of the generalized universal character and the generalized B-type universal character,and by acting the quantum fields presentations to the constant 1,the generating functions are derived.Furthermore,we introduce two integrable systems known as the generalized UC(GUC)hierarchy and the generalized Btype UC(GBUC)hierarchy satisfied by the generalized universal character and the generalized B-type universal character,respectively.Based on infinite sequences of complex numbers,we further establish the multiparameter generalized universal character and the multiparameter generalized B-type universal character,which have been proved to be solutions of the GUC hierarchy and the GBUC hierarchy,respectively.
基金supported by the Natural Science Foundation of Jilin Province(Grant No.20240101013JC)the National Natural Science Foundation of China(Grant Nos.62071412,62475226,62101479,12074330,and 12375020)the Young Talents Support Project of the Association of Science and Technology of Jilin Province(Grant No.QT202425)。
文摘We propose a scheme for generating high-quality single-photon sources utilizing the conventional photon blockade(CPB)effect in a cavity optomagnonic system with Kerr nonlinearity.The realization of the CPB effect depends on both the Kerr nonlinearity and Kerr-like nonlinearity of the optical cavity,which is converted using magneto-optical coupling.The CPB effect can be realized in a cavity optomagnonic system with weak magneto-optical coupling by modulating the strength of the Kerr nonlinearity.Notably,our scheme supports photon blockade in both the strong and weak Kerr nonlinear regimes,which broadens the range of experimental parameters.Furthermore,we explored the parameter regimes where the CPB effect could not be achieved because of the combined effects of the magneto-optical coupling and Kerr nonlinearity.We also determined the optimal driving amplitude region for generating high-quality single-photon sources.This work not only provides a novel route for realizing the CPB effect but also establishes a versatile platform for producing single-photon sources with high purity and brightness.
基金supported by the National Natural Science Foundation of China(12226006,11921001)the Natural Key Research and Development Program of China(2018YFA0704701).
文摘In 1694,Gregory and Newton proposed the problem to determine the kissing number of a rigid material ball.This problem and its higher dimensional generalization have been studied by many mathematicians,including Minkowski,van der Waerden,Hadwiger,Swinnerton-Dyer,Watson,Levenshtein,Odlyzko,Sloane and Musin.In this paper,we introduce and study a further generalization of the kissing numbers for convex bodies and obtain some exact results,in particular for balls in dimensions three,four and eight.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.12122403 and 12327807).
文摘Full waveform inversion(FWI)has showed great potential in the detection of musculoskeletal disease.However,FWI is an ill-posed inverse problem and has a high requirement on the initial model during the imaging process.An inaccurate initial model may lead to local minima in the inversion and unexpected imaging results caused by cycle-skipping phenomenon.Deep learning methods have been applied in musculoskeletal imaging,but need a large amount of data for training.Inspired by work related to generative adversarial networks with physical informed constrain,we proposed a method named as bone ultrasound imaging with physics informed generative adversarial network(BUIPIGAN)to achieve unsupervised multi-parameter imaging for musculoskeletal tissues,focusing on speed of sound(SOS)and density.In the in-silico experiments using a ring array transducer,conventional FWI methods and BUIPIGAN were employed for multiparameter imaging of two musculoskeletal tissue models.The results were evaluated based on visual appearance,structural similarity index measure(SSIM),signal-to-noise ratio(SNR),and relative error(RE).For SOS imaging of the tibia–fibula model,the proposed BUIPIGAN achieved accurate SOS imaging with best performance.The specific quantitative metrics for SOS imaging were SSIM 0.9573,SNR 28.70 dB,and RE 5.78%.For the multi-parameter imaging of the tibia–fibula and human forearm,the BUIPIGAN successfully reconstructed SOS and density distributions with SSIM above 94%,SNR above 21 dB,and RE below 10%.The BUIPIGAN also showed robustness across various noise levels(i.e.,30 dB,10 dB).The results demonstrated that the proposed BUIPIGAN can achieve high-accuracy SOS and density imaging,proving its potential for applications in musculoskeletal ultrasound imaging.
基金supported by the National Natural Science Foundation of China(12171373)Chen's work also supported by the Fundamental Research Funds for the Central Universities of China(GK202207018).
文摘In this paper,we study composition operators on weighted Bergman spaces of Dirichlet series.We first establish some Littlewood-type inequalities for generalized mean counting functions.Then we give sufficient conditions for a composition operator with zero characteristic to be bounded or compact on weighted Bergman spaces of Dirichlet series.The corresponding sufficient condition for compactness in the case of positive characteristics is also obtained.
文摘The increasing demand for radioauthorized applications in the 6G era necessitates enhanced monitoring and management of radio resources,particularly for precise control over the electromagnetic environment.The radio map serves as a crucial tool for describing signal strength distribution within the current electromagnetic environment.However,most existing algorithms rely on sparse measurements of radio strength,disregarding the impact of building information.In this paper,we propose a spectrum cartography(SC)algorithm that eliminates the need for relying on sparse ground-based radio strength measurements by utilizing a satellite network to collect data on buildings and transmitters.Our algorithm leverages Pix2Pix Generative Adversarial Network(GAN)to construct accurate radio maps using transmitter information within real geographical environments.Finally,simulation results demonstrate that our algorithm exhibits superior accuracy compared to previously proposed methods.
文摘Panoramic images, offering a 360-degree view, are essential in virtual reality(VR) and augmented reality(AR), enhancing realism with high-quality textures. However, acquiring complete and high-quality panoramic textures is challenging. This paper introduces a method using generative adversarial networks(GANs) and the contrastive language-image pretraining(CLIP) model to restore and control texture in panoramic images. The GAN model captures complex structures and maintains consistency, while CLIP enables fine-grained texture control via semantic text-image associations. GAN inversion optimizes latent codes for precise texture details. The resulting low dynamic range(LDR) images are converted to high dynamic range(HDR) using the Blender engine for seamless texture blending. Experimental results demonstrate the effectiveness and flexibility of this method in panoramic texture restoration and generation.
文摘针对粒子滤波计算量大、硬件实现困难的问题,提出了一种用于纯方位跟踪的简化粒子滤波算法,并通过Xilinx System Generator在FPGA上实现。首先,对通用粒子滤波算法进行适当简化,使其减少计算量并且易于硬件实现;其次,采用模块化设计,利用状态机综合并实现各个模块的时序控制;最后,转换为硬件语言,完成硬件仿真。仿真结果表明,所设计的简化粒子滤波算法各个模块工作正常,且具有较好的跟踪精度及运行速度,可用于非线性、非高斯系统的粒子滤波实现,对于粒子滤波的硬件实现方面具有一定的参考价值。
文摘To minimize the reactive power of the converter of the control winding in the novel dual stator-winding induction generator based on the PWM converter, design features of the induction generator with a rectified load are proposed. The optimization method of excited capacitors to minimize the reactive power of the control winding at a variable speed is given. The calculation capacity of the machine with a diode bridge rectifier load is proposed. To achieve global searching, the integrated method with the improved real-coded genetic algorithm and the twodimensional finite element method (FEM) is introduced. Design results of the sample show that reactive power can be reduced by the method, and the converter capacity can be decreased to 1/3 of output rated power at the speed ratio of 1 : 3, thus reducing the volume and the mass of the inverter.