期刊文献+
共找到19,445篇文章
< 1 2 250 >
每页显示 20 50 100
Self-potential inversion based on Attention U-Net deep learning network
1
作者 GUO You-jun CUI Yi-an +3 位作者 CHEN Hang XIE Jing ZHANG Chi LIU Jian-xin 《Journal of Central South University》 SCIE EI CAS CSCD 2024年第9期3156-3167,共12页
Landfill leaks pose a serious threat to environmental health,risking the contamination of both groundwater and soil resources.Accurate investigation of these sites is essential for implementing effective prevention an... Landfill leaks pose a serious threat to environmental health,risking the contamination of both groundwater and soil resources.Accurate investigation of these sites is essential for implementing effective prevention and control measures.The self-potential(SP)stands out for its sensitivity to contamination plumes,offering a solution for monitoring and detecting the movement and seepage of subsurface pollutants.However,traditional SP inversion techniques heavily rely on precise subsurface resistivity information.In this study,we propose the Attention U-Net deep learning network for rapid SP inversion.By incorporating an attention mechanism,this algorithm effectively learns the relationship between array-style SP data and the location and extent of subsurface contaminated sources.We designed a synthetic landfill model with a heterogeneous resistivity structure to assess the performance of Attention U-Net deep learning network.Additionally,we conducted further validation using a laboratory model to assess its practical applicability.The results demonstrate that the algorithm is not solely dependent on resistivity information,enabling effective locating of the source distribution,even in models with intricate subsurface structures.Our work provides a promising tool for SP data processing,enhancing the applicability of this method in the field of near-subsurface environmental monitoring. 展开更多
关键词 SELF-POTENTIAL attention mechanism U-Net deep learning network inversion landfill
在线阅读 下载PDF
Adaptive Bayesian inversion of pore water pressures based on artificial neural network : An earth dam case study
2
作者 AN Lu CARVAJAL Claudio +4 位作者 DIAS Daniel PEYRAS Laurent JENCK Orianne BREUL Pierre ZHANG Ting-ting 《Journal of Central South University》 CSCD 2024年第11期3930-3947,共18页
Most earth-dam failures are mainly due to seepage,and an accurate assessment of the permeability coefficient provides an indication to avoid a disaster.Parametric uncertainties are encountered in the seepage analysis,... Most earth-dam failures are mainly due to seepage,and an accurate assessment of the permeability coefficient provides an indication to avoid a disaster.Parametric uncertainties are encountered in the seepage analysis,and may be reduced by an inverse procedure that calibrates the simulation results to observations on the real system being simulated.This work proposes an adaptive Bayesian inversion method solved using artificial neural network(ANN)based Markov Chain Monte Carlo simulation.The optimized surrogate model achieves a coefficient of determination at 0.98 by ANN with 247 samples,whereby the computational workload can be greatly reduced.It is also significant to balance the accuracy and efficiency of the ANN model by adaptively updating the sample database.The enrichment samples are obtained from the posterior distribution after iteration,which allows a more accurate and rapid manner to the target posterior.The method was then applied to the hydraulic analysis of an earth dam.After calibrating the global permeability coefficient of the earth dam with the pore water pressure at the downstream unsaturated location,it was validated by the pore water pressure monitoring values at the upstream saturated location.In addition,the uncertainty in the permeability coefficient was reduced,from 0.5 to 0.05.It is shown that the provision of adequate prior information is valuable for improving the efficiency of the Bayesian inversion. 展开更多
关键词 earth dam permeability coefficient pore water pressure monitoring data bayesian inversion artificial neural network
在线阅读 下载PDF
Three dimensional shear wave velocity structure of crust and upper mantle in South China Sea and its adjacent regions by surface waveform inversion 被引量:22
3
作者 曹小林 朱介寿 +2 位作者 赵连锋 曹家敏 洪学海 《地震学报》 CSCD 北大核心 2001年第2期113-124,共12页
We assembled approximately 328 seismic records. The data set was from 4 digitally recording long-period and broadband stations of CDSN. We carried out the inversion based on the partitioned waveform inversion (PWI). I... We assembled approximately 328 seismic records. The data set was from 4 digitally recording long-period and broadband stations of CDSN. We carried out the inversion based on the partitioned waveform inversion (PWI). It partitions the large-scale optimization problem into a number of independent small-scale problems. We adopted surface waveform inversion with an equal block (2((2() discretization in order to acquire the images of shear velocity structure at different depths (from surface to 430 km) in the crust and upper-mantle. The resolution of all these anomalies has been established with (check-board( resolution tests. These results show significant difference in velocity, lithosphere and asthenosphere structure between South China Sea and its adjacent regions. 展开更多
关键词 面波波形 分块波形反演 三维S波速度结构 中国数字地震台网 “检验板”法 岩石圈
在线阅读 下载PDF
Two-phase TOPSIS of uncertain multi-attribute group decision-making 被引量:17
4
作者 Wenkun Zhou Wenchun Jiang 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2010年第3期423-430,共8页
To solve the uncertain multi-attribute group decision-making of unknown attribute weights,three optimal models are built to decide the corresponding ideal solution weights,standard deviation weights and mean deviation... To solve the uncertain multi-attribute group decision-making of unknown attribute weights,three optimal models are built to decide the corresponding ideal solution weights,standard deviation weights and mean deviation weights.The comprehensive attribute weights are gotten through the product of the above three kinds of weights.And each decision maker's weighted decision matrices are also received by using the integrated attribute weights.The closeness degrees are also gotten by use of technique for order preference by similarity to ideal solution(TOPSIS) through dealing with the weighted decision matrices.At the same time the group decision matrix and weighted group decision matrix are gotten by using each decision-maker's closeness degree to every project.Then the vertical TOPSIS method is used to calculate the closeness degree of each project.So these projects can be ranked according to their values of the closeness degree.The process of the method is also given step by step.Finally,a numerical example demonstrates the feasibility and effectiveness of the approach. 展开更多
关键词 multi-attribute decision-making uncertain numbers TOPSIS WEIGHTS the closeness degree.
在线阅读 下载PDF
Performance evaluation for intelligent optimization algorithms in self-potential data inversion 被引量:4
5
作者 崔益安 朱肖雄 +2 位作者 陈志学 刘嘉文 柳建新 《Journal of Central South University》 SCIE EI CAS CSCD 2016年第10期2659-2668,共10页
The self-potential method is widely used in environmental and engineering geophysics. Four intelligent optimization algorithms are adopted to design the inversion to interpret self-potential data more accurately and e... The self-potential method is widely used in environmental and engineering geophysics. Four intelligent optimization algorithms are adopted to design the inversion to interpret self-potential data more accurately and efficiently: simulated annealing, genetic, particle swarm optimization, and ant colony optimization. Using both noise-free and noise-added synthetic data, it is demonstrated that all four intelligent algorithms can perform self-potential data inversion effectively. During the numerical experiments, the model distribution in search space, the relative errors of model parameters, and the elapsed time are recorded to evaluate the performance of the inversion. The results indicate that all the intelligent algorithms have good precision and tolerance to noise. Particle swarm optimization has the fastest convergence during iteration because of its good balanced searching capability between global and local minimisation. 展开更多
关键词 SELF-POTENTIAL inversion intelligent algorithm
在线阅读 下载PDF
Novel combinatorial algorithm for the problems of fuzzy grey multi-attribute group decision making 被引量:13
6
作者 Rao Congjun Xiao Xinping Peng Jin 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2007年第4期774-780,共7页
To study the fuzzy and grey information in the problems of multi-attribute group decision making, the basic concepts of both fuzzy grey numbers and grey interval numbers are given firstly, then a new model of fuzzy gr... To study the fuzzy and grey information in the problems of multi-attribute group decision making, the basic concepts of both fuzzy grey numbers and grey interval numbers are given firstly, then a new model of fuzzy grey multi-attribute group decision making based on the theories of fuzzy mathematics and grey system is presented. Furthermore, the grey interval relative degree and deviation degree is defined, and both the optimistic algorithm of the grey interval relational degree and the algorithm of deviation degree minimization for solving this new model are also given. Finally, a decision making example to demonstrate the feasibility and rationality of this new method is given, and the results by using these two algorithms are uniform. 展开更多
关键词 multi-attribute group decision making fuzzy grey number grey interval relational degree deviation degree
在线阅读 下载PDF
New recursive algorithm for matrix inversion 被引量:4
7
作者 Cao Jianshu Wang Xuegang 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2008年第2期381-384,共4页
To reduce the computational complexity of matrix inversion, which is the majority of processing in many practical applications, two numerically efficient recursive algorithms (called algorithms I and II, respectively... To reduce the computational complexity of matrix inversion, which is the majority of processing in many practical applications, two numerically efficient recursive algorithms (called algorithms I and II, respectively) are presented. Algorithm I is used to calculate the inverse of such a matrix, whose leading principal minors are all nonzero. Algorithm II, whereby, the inverse of an arbitrary nonsingular matrix can be evaluated is derived via improving the algorithm I. The implementation, for algorithm II or I, involves matrix-vector multiplications and vector outer products. These operations are computationally fast and highly parallelizable. MATLAB simulations show that both recursive algorithms are valid. 展开更多
关键词 recursive algorithm matrix inversion matrix-vector product leading principal minor (LPM).
在线阅读 下载PDF
Multi-attributed decision making for mining methods based on grey system and interval numbers 被引量:8
8
作者 刘浪 陈建宏 +1 位作者 王革民 劳德正 《Journal of Central South University》 SCIE EI CAS 2013年第4期1029-1033,共5页
In the case of unknown weights, theories of multi-attributed decision making based on interval numbers and grey related analysis were used to optimize mining methods. As the representative of independence for the indi... In the case of unknown weights, theories of multi-attributed decision making based on interval numbers and grey related analysis were used to optimize mining methods. As the representative of independence for the indicator, the smaller the correlation of indicators is, the greater the weight is. Hence, the weights of interval numbers of indicators were determined by using correlation coefficient. Relative closeness based on positive and negative ideal methods was calculated by introducing distance between interval numbers, which made decision making more rational and comprehensive. A new method of ranking interval numbers based on normal distribution was proposed for the optimization of mining methods, whose basic properties were discussed. Finally, the feasibility and effectiveness of this method were verified by theories and practice. 展开更多
关键词 mining method interval number multi-attributed decision making grey related analysis correlation coefficient normaldistribution RANKING
在线阅读 下载PDF
A decision support system for satellite layout integrating multi-objective optimization and multi-attribute decision making 被引量:3
9
作者 LIANG Yan’gang QIN Zheng 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2019年第3期535-544,共10页
A decision support system, including a multi-objective optimization framework and a multi-attribute decision making approach is proposed for satellite equipment layout. Firstly, given three objectives (to minimize the... A decision support system, including a multi-objective optimization framework and a multi-attribute decision making approach is proposed for satellite equipment layout. Firstly, given three objectives (to minimize the C.G. offset, the cross moments of inertia and the space debris impact risk), we develop a threedimensional layout optimization model. Unlike most of the previous works just focusing on mass characteristics of the system, a space debris impact risk index is developed. Secondly, we develop an efficient optimization framework for the integration of computer-aided design (CAD) software as well as the optimization algorithm to obtain the Pareto front of the layout optimization problem. Thirdly, after obtaining the candidate solutions, we present a multi-attribute decision making approach, which integrates the smart Pareto filter and the correlation coefficient and standard deviation (CCSD) method to select the best tradeoff solutions on the optimal Pareto fronts. Finally, the framework and the decision making approach are applied to a case study of a satellite platform. 展开更多
关键词 layout OPTIMIZATION SATELLITE MULTI-OBJECTIVE OPTIMIZATION PARETO FRONT multi-attribute decision making
在线阅读 下载PDF
Inversion of self-potential anomalies caused by simple polarized bodies based on particle swarm optimization 被引量:8
10
作者 LUO Yi-jian CUI Yi-an +2 位作者 XIE Jing LU He-shun-zi LIU Jian-xin 《Journal of Central South University》 SCIE EI CAS CSCD 2021年第6期1797-1812,共16页
Prticle swarm optimization(PSO)is adopted to invert the self-potential anomalies of simple geometry.Taking the vertical semi-infinite cylinder model as an example,the model parameters are first inverted using standard... Prticle swarm optimization(PSO)is adopted to invert the self-potential anomalies of simple geometry.Taking the vertical semi-infinite cylinder model as an example,the model parameters are first inverted using standard particle swarm optimization(SPSO),and then the searching behavior of the particle swarm is discussed and the change of the particles’distribution during the iteration process is studied.The existence of different particle behaviors enables the particle swarm to explore the searching space more comprehensively,thus PSO achieves remarkable results in the inversion of SP anomalies.Finally,six improved PSOs aiming at improving the inversion accuracy and the convergence speed by changing the update of particle positions,inertia weights and learning factors are introduced for the inversion of the cylinder model,and the effectiveness of these algorithms is verified by numerical experiments.The inversion results show that these improved PSOs successfully give the model parameters which are very close to the theoretical value,and simultaneously provide guidance when determining which strategy is suitable for the inversion of the regular polarized bodies and similar geophysical problems. 展开更多
关键词 SELF-POTENTIAL inversion particle swarm optimization
在线阅读 下载PDF
Approach to stochastic multi-attribute decision problems using rough sets theory 被引量:8
11
作者 Yao Shengbao Yue Chaoyuan 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2006年第1期103-108,共6页
Multi-attribute decision problems where the performances of the alternatives are random variables are considered. The suggested approach grades the probabilities of preference of one alternative over another with resp... Multi-attribute decision problems where the performances of the alternatives are random variables are considered. The suggested approach grades the probabilities of preference of one alternative over another with respect to the same attribute. Based on the graded probabilistic dominance relation, the pairwise comparison information table is defined. The global preferences of the decision maker can be seen as a rough binary relation. The present paper proposes to approximate this preference relation by means of the graded probabilistic dominance relation with respect to the subsets of attributes. At last, the method is illustrated by an example. 展开更多
关键词 stochastic multi-attribute decision making rough sets graded probabilistic diminance relation decision rules.
在线阅读 下载PDF
Method for uncertain multi-attribute decisionmaking with preference information in the form of interval numbers complementary judgment matrix 被引量:16
12
作者 Zhou Hong'an Liu Sanyang Fang Xiangrong 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2007年第2期265-269,共5页
The uncertain multi-attribute decision-making problems because of the information about attribute weights being known partly, and the decision maker's preference information on alternatives taking the form of interva... The uncertain multi-attribute decision-making problems because of the information about attribute weights being known partly, and the decision maker's preference information on alternatives taking the form of interval numbers complementary to the judgment matrix, are investigated. First, the decision-making information, based on the subjective uncertain complementary preference matrix on alternatives is made uniform by using a translation function, and then an objective programming model is established. The attribute weights are obtained by solving the model, thus the overall values of the alternatives are gained by using the additive weighting method. Second, the alternatives are ranked, by using the continuous ordered weighted averaging (C-OWA) operator. A new approach to the uncertain multi-attribute decision-making problems, with uncertain preference information on alternatives is proposed. It is characterized by simple operations and can be easily implemented on a computer. Finally, a practical example is illustrated to show the feasibility and availability of the developed method. 展开更多
关键词 Uncertain multi-attribute decision-making Objective programming Weight C-OWA operator Priority.
在线阅读 下载PDF
Multi-attribute decision making method for air target threat evaluation based on intuitionistic fuzzy sets 被引量:46
13
作者 Yongjie XU YongchunWang Xudong Miu 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2012年第6期891-897,共7页
The function of the air target threat evaluation (TE) is the foundation for weapons allocation and senor resources management within the surface air defense. The multi-attribute evaluation methodology is utilized to... The function of the air target threat evaluation (TE) is the foundation for weapons allocation and senor resources management within the surface air defense. The multi-attribute evaluation methodology is utilized to address the issue of the TE in which the tactic features of the detected target are treated as evaluation attributes. Meanwhile, the intuitionistic fuzzy set (IFS) is employed to deal with information uncertainty in the TE process. Furthermore, on the basis of the entropy weight and inclusion-comparison probability, a hybrid TE method is developed. In order to accommodate the demands of naturalistic decision making, the proposed method allows air defense commanders to express their intuitive opinions besides incorporating into the threat features of the detected target. An illustrative example is provided to indicate the feasibility and advantage of the proposed method. 展开更多
关键词 threat evaluation (TE) intuitionistic fuzzy set (IFS) multi-attribute evaluation intuitive opinions entropy weight inclusion-comparison probability (ICP).
在线阅读 下载PDF
Regularized inversion for coseismic slip distribution with active constraint balancing 被引量:2
14
作者 TONG Xiao-zhong XIE Wei GAO Da-wei 《Journal of Central South University》 SCIE EI CAS CSCD 2017年第12期2961-2968,共8页
Estimating the spatial distribution of coseismic slip is an ill-posed inverse problem, and solutions may be extremely oscillatory due to measurement errors without any constraints on the coseismic slip distribution. I... Estimating the spatial distribution of coseismic slip is an ill-posed inverse problem, and solutions may be extremely oscillatory due to measurement errors without any constraints on the coseismic slip distribution. In order to obtain stable solution for coseismic slip inversion, regularization method with smoothness-constrained was imposed. Trade-off parameter in regularized inversion, which balances the minimization of the data misfit and model roughness, should be a critical procedure to achieve both resolution and stability. Then, the active constraint balancing approach is adopted, in which the trade-off parameter is regarded as a spatial variable at each model parameter and automatically determined via the model resolution matrix and the spread function. Numerical experiments for a synthetical model indicate that regularized inversion using active constraint balancing approach can provides stable inversion results and have low sensitivity to the knowledge of the exact character of the Gaussian noise. Regularized inversion combined with active constraint balancing approach is conducted on the 2005 Nias earthquake. The released moment based on the estimated coseismic slip distribution is 9.91×1021 N·m, which is equivalent to a moment magnitude of 8.6 and almost identical to the value determined by USGS. The inversion results for synthetic coseismic uniform-slip model and the 2005 earthquake show that smoothness-constrained regularized inversion method combined with active constraint balancing approach is effective, and can be reasonable to reconstruct coseismic slip distribution on fault. 展开更多
关键词 COSEISMIC SLIP inversion trade-off parameter ACTIVE CONSTRAINT balancing model resolution matrix spread function
在线阅读 下载PDF
Chlorophyll Content Retrieval of Rice Canopy with Multi-spectral Inversion Based on LS-SVR Algorithm 被引量:2
15
作者 Jin Si-yu Su Zhong-bin +3 位作者 Xu Zhe-nan Jia Yin-jiang Yan Yu-guang Jiang Tao 《Journal of Northeast Agricultural University(English Edition)》 CAS 2019年第1期53-63,共11页
To monitor growth and predict the yield of rice over a large area, the chlorophyll contents in the rice canopy were estimated using the unmanned aerial vehicle(UAV) remote sensing technology. In this work, multi-spect... To monitor growth and predict the yield of rice over a large area, the chlorophyll contents in the rice canopy were estimated using the unmanned aerial vehicle(UAV) remote sensing technology. In this work, multi-spectral image information of the rice crop was obtained using a 6-channel multi-spectral camera mounted on a fixed wing UAV, which was flown 600 m above the ground, between 11: 00-14: 00 on a sunny day in summer. The measured chlorophyll values were collected as sample sets. The s-REP index was screened out to estimate chlorophyll contents through the analysis of six kinds of spectral indexes of chlorophyll estimated capacity. An inversion model of the chlorophyll contents was then built using the least square support vector regression(LS-SVR)algorithm, with calibration and prediction R-square values of 0.89 and 0.83, respectively. Finally, remote sensing mapping for a UAV image of the Fangzheng County Dexter Rice Planting Park was accomplished using the inversion model. The inversion and measured values were then compared using regression fitting. R-square and root-mean-square error of the fitting model were 0.79 and 2.39,respectively. The results demonstrated that accurate estimation of rice-canopy chlorophyll contents was feasible using the LS-SVR inversion model developed using the s-REP vegetation index. 展开更多
关键词 remote sensing CHLOROPHYLL rice UAV MULTI-SPECTRAL inversion LS-SVR
在线阅读 下载PDF
Nonlinear inversion for magnetotelluric sounding based on deep belief network 被引量:10
16
作者 WANG He LIU Wei XI Zhen-zhu 《Journal of Central South University》 SCIE EI CAS CSCD 2019年第9期2482-2494,共13页
To improve magnetotelluric(MT)nonlinear inversion accuracy and stability,this work introduces the deep belief network(DBN)algorithm.Firstly,a network frame is set up for training in different 2D MT models.The network ... To improve magnetotelluric(MT)nonlinear inversion accuracy and stability,this work introduces the deep belief network(DBN)algorithm.Firstly,a network frame is set up for training in different 2D MT models.The network inputs are the apparent resistivities of known models,and the outputs are the model parameters.The optimal network structure is achieved by determining the numbers of hidden layers and network nodes.Secondly,the learning process of the DBN is implemented to obtain the optimal solution of network connection weights for known geoelectric models.Finally,the trained DBN is verified through inversion tests,in which the network inputs are the apparent resistivities of unknown models,and the outputs are the corresponding model parameters.The experiment results show that the DBN can make full use of the global searching capability of the restricted Boltzmann machine(RBM)unsupervised learning and the local optimization of the back propagation(BP)neural network supervised learning.Comparing to the traditional neural network inversion,the calculation accuracy and stability of the DBN for MT data inversion are improved significantly.And the tests on synthetic data reveal that this method can be applied to MT data inversion and achieve good results compared with the least-square regularization inversion. 展开更多
关键词 MAGNETOTELLURICS nonlinear inversion deep learning deep belief network
在线阅读 下载PDF
Extension of TOPSIS for fuzzy multi-attribute decision making problem based on experimental analysis 被引量:16
17
作者 Min Tian Yuanyuan He Sifeng Liu 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2010年第3期416-422,共7页
This paper is concerned with a technique for order performance by similarity to ideal solution(TOPSIS) method for fuzzy multi-attribute decision making,in which the information about attribute weights is partly know... This paper is concerned with a technique for order performance by similarity to ideal solution(TOPSIS) method for fuzzy multi-attribute decision making,in which the information about attribute weights is partly known and the attribute values take form of triangular fuzzy numbers.Considering the fact that the triangular fuzzy TOPSIS results yielded by different distance measures are different from others,a comparative analysis of triangular fuzzy TOPSIS ranking from each distance measure is illustrated with discussion on standard deviation.By applying the most reasonable distance,the deviation degrees between attribute values are measured.A linear programming model based on the maximal deviation of weighted attribute values is established to obtain the attribute weights.Therefore,alternatives are ranked by using TOPSIS method.Finally,a numerical example is given to show the feasibility and effectiveness of the method. 展开更多
关键词 fuzzy multi-attribute decision making technique for order performance by similarity to ideal solution(TOPSIS) method triangular fuzzy number distance measure.
在线阅读 下载PDF
An improved particle filtering algorithm based on observation inversion optimal sampling 被引量:3
18
作者 胡振涛 潘泉 +1 位作者 杨峰 程咏梅 《Journal of Central South University》 SCIE EI CAS 2009年第5期815-820,共6页
According to the effective sampling of particles and the particles impoverishment caused by re-sampling in particle filter,an improved particle filtering algorithm based on observation inversion optimal sampling was p... According to the effective sampling of particles and the particles impoverishment caused by re-sampling in particle filter,an improved particle filtering algorithm based on observation inversion optimal sampling was proposed. Firstly,virtual observations were generated from the latest observation,and two sampling strategies were presented. Then,the previous time particles were sampled by utilizing the function inversion relationship between observation and system state. Finally,the current time particles were generated on the basis of the previous time particles and the system one-step state transition model. By the above method,sampling particles can make full use of the latest observation information and the priori modeling information,so that they further approximate the true state. The theoretical analysis and experimental results show that the new algorithm filtering accuracy and real-time outperform obviously the standard particle filter,the extended Kalman particle filter and the unscented particle filter. 展开更多
关键词 particle filter proposal distribution re-sampling observation inversion
在线阅读 下载PDF
Nonlinear inversion for electrical resistivity tomography based on chaotic DE-BP algorithm 被引量:5
19
作者 戴前伟 江沸菠 董莉 《Journal of Central South University》 SCIE EI CAS 2014年第5期2018-2025,共8页
Nonlinear resistivity inversion requires efficient artificial neural network(ANN)model for better inversion results.An evolutionary BP neural network(BPNN)approach based on differential evolution(DE)algorithm was pres... Nonlinear resistivity inversion requires efficient artificial neural network(ANN)model for better inversion results.An evolutionary BP neural network(BPNN)approach based on differential evolution(DE)algorithm was presented,which was able to improve global search ability for resistivity tomography 2-D nonlinear inversion.In the proposed method,Tent equation was applied to obtain automatic parameter settings in DE and the restricted parameter Fcrit was used to enhance the ability of converging to global optimum.An implementation of proposed DE-BPNN was given,the network had one hidden layer with 52 nodes and it was trained on 36 datasets and tested on another 4 synthetic datasets.Two abnormity models were used to verify the feasibility and effectiveness of the proposed method,the results show that the proposed DE-BP algorithm has better performance than BP,conventional DE-BP and other chaotic DE-BP methods in stability and accuracy,and higher imaging quality than least square inversion. 展开更多
关键词 electrical resistivity tomography nonlinear inversion differential evolution back propagation network Tent map
在线阅读 下载PDF
Multi-attribute group decision making method under 2-dimension uncertain linguistic variables 被引量:4
20
作者 JIANG Kexin ZHANG Quan YAN Manting 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2020年第6期1254-1261,共8页
A method is proposed to deal with the uncertain multiple attribute group decision making problems,where 2-dimension uncertain linguistic variables(2DULVs)are used as the reliable way for the experts to express their f... A method is proposed to deal with the uncertain multiple attribute group decision making problems,where 2-dimension uncertain linguistic variables(2DULVs)are used as the reliable way for the experts to express their fuzzy subjective evaluation information.Firstly,in order to measure the 2DULVs more accurately,a new method is proposed to compare two 2DULVs,called a score function,while a new function is defined to measure the distance between two 2DULVs.Secondly,two optimization models are established to determine the weight of experts and attributes based on the new distance formula and a weighted average operator is used to determine the comprehensive evaluation value of each alternative.Then,a score function is used to determine the ranking of the alternatives.Finally,the effectiveness of the proposed method is proved by an illustrated example. 展开更多
关键词 2-dimension uncertain linguistic variables(2DULVs) multi-attribute group decision making problem score function distance formula
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部