Multi-agent systems often require good interoperability in the process of completing their assigned tasks.This paper first models the static structure and dynamic behavior of multiagent systems based on layered weight...Multi-agent systems often require good interoperability in the process of completing their assigned tasks.This paper first models the static structure and dynamic behavior of multiagent systems based on layered weighted scale-free community network and susceptible-infected-recovered(SIR)model.To solve the problem of difficulty in describing the changes in the structure and collaboration mode of the system under external factors,a two-dimensional Monte Carlo method and an improved dynamic Bayesian network are used to simulate the impact of external environmental factors on multi-agent systems.A collaborative information flow path optimization algorithm for agents under environmental factors is designed based on the Dijkstra algorithm.A method for evaluating system interoperability is designed based on simulation experiments,providing reference for the construction planning and optimization of organizational application of the system.Finally,the feasibility of the method is verified through case studies.展开更多
Using a dynamic laser monitoring technique,the solubility of 3-nitro-1,2,4-triazole-5-one(NTO)was investigated in two different binary systems,namely hydroxylamine nitrate(HAN)-water and boric acid(HB)-water ranging f...Using a dynamic laser monitoring technique,the solubility of 3-nitro-1,2,4-triazole-5-one(NTO)was investigated in two different binary systems,namely hydroxylamine nitrate(HAN)-water and boric acid(HB)-water ranging from 278.15 K to 318.15 K.The solubility in each system was found to be positively correlated with temperature.Furthermore,solubility data were analyzed using four equations:the modified Apelblat equation,Van’t Hoff equation,λh equation and CNIBS/R-K equations,and they provided satisfactory results for both two systems.The average root-mean-square deviation(105RMSD)values for these models were less than 13.93.Calculations utilizing the Van’t Hoff equation and Gibbs equations facilitated the derivation of apparent thermodynamic properties of NTO dissolution in the two systems,including values for Gibbs free energy,enthalpy and entropy.The%ζ_(H)is larger than%ζ_(TS),and all the%ζ_(H)data are≥58.63%,indicating that the enthalpy make a greater contribution than entropy to theΔG_(soln)^(Θ).展开更多
In order to enhance the control performance of piezo-positioning system,the influence of hysteresis characteristics and its compensation method are studied.Hammerstein model is used to represent the dynamic hysteresis...In order to enhance the control performance of piezo-positioning system,the influence of hysteresis characteristics and its compensation method are studied.Hammerstein model is used to represent the dynamic hysteresis nonlinear characteristics of piezo-positioning actuator.The static nonlinear part and dynamic linear part of the Hammerstein model are represented by models obtained through the Prandtl-Ishlinskii(PI)model and Hankel matrix system identification method,respectively.This model demonstrates good generalization capability for typical input frequencies below 200 Hz.A sliding mode inverse compensation tracking control strategy based on P-I inverse model and integral augmentation is proposed.Experimental results show that compared with PID inverse compensation control and sliding mode control without inverse compensation,the sliding mode inverse compensation control has a more ideal step response and no overshoot,moreover,the settling time is only 6.2 ms.In the frequency domain,the system closed-loop tracking bandwidth reaches 119.9 Hz,and the disturbance rejection bandwidth reaches 86.2 Hz.The proposed control strategy can effectively compensate the hysteresis nonlinearity,and improve the tracking accuracy and antidisturbance capability of piezo-positioning system.展开更多
In this paper,the small-signal modeling of the Indium Phosphide High Electron Mobility Transistor(InP HEMT)based on the Transformer neural network model is investigated.The AC S-parameters of the HEMT device are train...In this paper,the small-signal modeling of the Indium Phosphide High Electron Mobility Transistor(InP HEMT)based on the Transformer neural network model is investigated.The AC S-parameters of the HEMT device are trained and validated using the Transformer model.In the proposed model,the eight-layer transformer encoders are connected in series and the encoder layer of each Transformer consists of the multi-head attention layer and the feed-forward neural network layer.The experimental results show that the measured and modeled S-parameters of the HEMT device match well in the frequency range of 0.5-40 GHz,with the errors versus frequency less than 1%.Compared with other models,good accuracy can be achieved to verify the effectiveness of the proposed model.展开更多
The undrained mechanical behavior of unsaturated completely weathered granite(CWG)is highly susceptible to alterations in the hydraulic environment,particularly under uniaxial loading conditions,due to the unique natu...The undrained mechanical behavior of unsaturated completely weathered granite(CWG)is highly susceptible to alterations in the hydraulic environment,particularly under uniaxial loading conditions,due to the unique nature of this soil type.In this study,a series of unconfined compression tests were carried out on unsaturated CWG soil in an underground engineering site,and the effects of varying the environmental variables on the main undrained mechanical properties were analyzed.Based on the experimental results,a novel constitutive model was then established using the damage mechanics theory and the undetermined coefficient method.The results demonstrate that the curves of remolded CWG specimens with different moisture contents and dry densities exhibited diverse characteristics,including brittleness,significant softening,and ductility.As a typical indicator,the unconfined compression strength of soil specimens initially increased with an increase in moisture content and then decreased.Meanwhile,an optimal moisture content of approximately 10.5%could be observed,while a critical moisture content value of 13.0%was identified,beyond which the strength of the specimen decreases sharply.Moreover,the deformation and fracture of CWG specimens were predominantly caused by shear failure,and the ultimate failure modes were primarily influenced by moisture content rather than dry density.Furthermore,by comparing several similar models and the experimental data,the proposed model could accurately replicate the undrained mechanical characteristics of unsaturated CWG soil,and quantitatively describe the key mechanical indexes.These findings offer a valuable reference point for understanding the underlying mechanisms,anticipating potential risks,and implementing effective control measures in similar underground engineering projects.展开更多
This paper addresses the time-varying formation-containment(FC) problem for nonholonomic multi-agent systems with a desired trajectory constraint, where only the leaders can acquire information about the desired traje...This paper addresses the time-varying formation-containment(FC) problem for nonholonomic multi-agent systems with a desired trajectory constraint, where only the leaders can acquire information about the desired trajectory. Input the fixed time-varying formation template to the leader and start executing, this process also needs to track the desired trajectory, and the follower needs to converge to the convex hull that the leader crosses. Firstly, the dynamic models of nonholonomic systems are linearized to second-order dynamics. Then, based on the desired trajectory and formation template, the FC control protocols are proposed. Sufficient conditions to achieve FC are introduced and an algorithm is proposed to resolve the control parameters by solving an algebraic Riccati equation. The system is demonstrated to achieve FC, with the average position and velocity of the leaders converging asymptotically to the desired trajectory. Finally, the theoretical achievements are verified in simulations by a multi-agent system composed of virtual human individuals.展开更多
Architecture framework has become an effective method recently to describe the system of systems(SoS)architecture,such as the United States(US)Department of Defense Architecture Framework Version 2.0(DoDAF2.0).As a vi...Architecture framework has become an effective method recently to describe the system of systems(SoS)architecture,such as the United States(US)Department of Defense Architecture Framework Version 2.0(DoDAF2.0).As a viewpoint in DoDAF2.0,the operational viewpoint(OV)describes operational activities,nodes,and resource flows.The OV models are important for SoS architecture development.However,as the SoS complexity increases,constructing OV models with traditional methods exposes shortcomings,such as inefficient data collection and low modeling standards.Therefore,we propose an intelligent modeling method for five OV models,including operational resource flow OV-2,organizational relationships OV-4,operational activity hierarchy OV-5a,operational activities model OV-5b,and operational activity sequences OV-6c.The main idea of the method is to extract OV architecture data from text and generate interoperable OV models.First,we construct the OV meta model based on the DoDAF2.0 meta model(DM2).Second,OV architecture named entities is recognized from text based on the bidirectional long short-term memory and conditional random field(BiLSTM-CRF)model.And OV architecture relationships are collected with relationship extraction rules.Finally,we define the generation rules for OV models and develop an OV modeling tool.We use unmanned surface vehicles(USV)swarm target defense SoS architecture as a case to verify the feasibility and effectiveness of the intelligent modeling method.展开更多
Process of dynamic recrystallization(DRX)plays a crucial role in altering the microstructure and enhancing the mechanical characteristics of CrNiMoVW steel.However,its initiation mechanism,deformation conditions,and p...Process of dynamic recrystallization(DRX)plays a crucial role in altering the microstructure and enhancing the mechanical characteristics of CrNiMoVW steel.However,its initiation mechanism,deformation conditions,and predictive models remain insufficiently understood,requiring further research to optimize the processing technology.In the present study,hot compression experiments were carried out on 30CrNiMoVW steel under deformation conditions with temperatures ranging from 950 to 1,250℃and strain rates from 0.001 to 1 s~(-1),during which true stress-strain curves were obtained.Based on friction and temperature corrections applied to these curves,a constitutive equation for 30CrNiMoVW steel was established,and its accuracy was verified through fitting analysis.Simultaneously,the study identified limitations in the initial volume fraction model,prompting the development of a modified recrystallization volume fraction model that was validated via correlation analysis between experimental data and model predictions.Furthermore,building upon the modified recrystallization volume fraction model,a novel recrystallization rate model was developed,and three characteristic strain points were determined.These points segmented the rate curve into three stages:a slow initiation stage(0,ε1),a rapid growth stage(1,ε3),and a slow equilibrium stage(e3,0.9).Notably,the value ofε3 was considered the most economical,ensuring the formation of fine and uniform grains during production while optimizing the process,reducing energy consumption and costs,and enhancing overall material performance.Finally,based on the physical constitutive relationships and kinetic models,a multiscale simulation approach combining the finite element method(FEM)and cellular automata(CA)was employed to predict the microstructural evolution of 30CrNiMoVW steel.The simulation results demonstrate that the FEM&CA approach can accurately reproduce the dynamic recrystallization behavior and microstructural evolution observed experimentally.This work provides critical guidance for the development of forging processes for 30CrNiMoVW steel.展开更多
This study introduces a comprehensive theoretical framework for accurately calculating the electronic band-structure of strained long-wavelength InAs/GaSb type-Ⅱsuperlattices.Utilizing an eight-band k·p Hamilto⁃...This study introduces a comprehensive theoretical framework for accurately calculating the electronic band-structure of strained long-wavelength InAs/GaSb type-Ⅱsuperlattices.Utilizing an eight-band k·p Hamilto⁃nian in conjunction with a scattering matrix method,the model effectively incorporates quantum confinement,strain effects,and interface states.This robust and numerically stable approach achieves exceptional agreement with experimental data,offering a reliable tool for analyzing and engineering the band structure of complex multi⁃layer systems.展开更多
The precise characterization of hypersonic glide vehicle(HGV) maneuver laws in complex flight scenarios still faces challenges. Non-stationary changes in flight state due to abrupt changes in maneuver modes place high...The precise characterization of hypersonic glide vehicle(HGV) maneuver laws in complex flight scenarios still faces challenges. Non-stationary changes in flight state due to abrupt changes in maneuver modes place high demands on the accuracy of modeling methods. To address this issue, a novel maneuver laws modeling and analysis method based on higher order multi-resolution dynamic mode decomposition(HMDMD) is proposed in this work. A joint time-space-frequency decomposition of the vehicle's state sequence in the complex flight scenario is achieved with the higher order Koopman assumption and standard multi-resolution dynamic mode decomposition, and an approximate dynamic model is established. The maneuver laws can be reconstructed and analyzed with extracted multi-scale spatiotemporal modes with clear physical meaning. Based on the dynamic model of HGV, two flight scenarios are established with constant angle of attack and complex maneuver laws, respectively. Simulation results demonstrate that the maneuver laws obtained using the HMDMD method are highly consistent with those derived from the real dynamic model, the modeling accuracy is better than other common modeling methods, and the method has strong interpretability.展开更多
In this paper,a feature selection method for determining input parameters in antenna modeling is proposed.In antenna modeling,the input feature of artificial neural network(ANN)is geometric parameters.The selection cr...In this paper,a feature selection method for determining input parameters in antenna modeling is proposed.In antenna modeling,the input feature of artificial neural network(ANN)is geometric parameters.The selection criteria contain correlation and sensitivity between the geometric parameter and the electromagnetic(EM)response.Maximal information coefficient(MIC),an exploratory data mining tool,is introduced to evaluate both linear and nonlinear correlations.The EM response range is utilized to evaluate the sensitivity.The wide response range corresponding to varying values of a parameter implies the parameter is highly sensitive and the narrow response range suggests the parameter is insensitive.Only the parameter which is highly correlative and sensitive is selected as the input of ANN,and the sampling space of the model is highly reduced.The modeling of a wideband and circularly polarized antenna is studied as an example to verify the effectiveness of the proposed method.The number of input parameters decreases from8 to 4.The testing errors of|S_(11)|and axis ratio are reduced by8.74%and 8.95%,respectively,compared with the ANN with no feature selection.展开更多
Aiming at the problem on cooperative air-defense of surface warship formation, this paper maps the cooperative airdefense system of systems (SoS) for surface warship formation (CASoSSWF) to the biological immune s...Aiming at the problem on cooperative air-defense of surface warship formation, this paper maps the cooperative airdefense system of systems (SoS) for surface warship formation (CASoSSWF) to the biological immune system (BIS) according to the similarity of the defense mechanism and characteristics between the CASoSSWF and the BIS, and then designs the models of components and the architecture for a monitoring agent, a regulating agent, a killer agent, a pre-warning agent and a communicating agent by making use of the theories and methods of the artificial immune system, the multi-agent system (MAS), the vaccine and the danger theory (DT). Moreover a new immune multi-agent model using vaccine based on DT (IMMUVBDT) for the cooperative air-defense SoS is advanced. The immune response and immune mechanism of the CASoSSWF are analyzed. The model has a capability of memory, evolution, commendable dynamic environment adaptability and self-learning, and embodies adequately the cooperative air-defense mechanism for the CASoSSWF. Therefore it shows a novel idea for the CASoSSWF which can provide conception models for a surface warship formation operation simulation system.展开更多
The development process of complex equipment involves multi-stage business processes,multi-level product architecture,and multi-disciplinary physical processes.The relationship between its system model and various dis...The development process of complex equipment involves multi-stage business processes,multi-level product architecture,and multi-disciplinary physical processes.The relationship between its system model and various disciplinary models is extremely complicated.In the modeling and integration process,extensive customized development is needed to realize model integration and interoperability in different business scenarios.Meanwhile,the differences in modeling and interaction between different modeling tools make it difficult to support the consistent representation of models in complex scenarios.To improve the efficiency of system modeling and integration in complex business scenarios,a system modeling and integration method was proposed.This method took the Sys ML language kernel as the core and system model function integration as the main line.Through the technical means of model view separation,abstract operation interface,and model view configuration,the model modeling and integration of multi-user,multi-model,multi-view,and different business logic in complex business scenarios were realized.展开更多
Today’s air combat has reached a high level of uncertainty where continuous or discrete variables with crisp values cannot be properly represented using fuzzy sets. With a set of membership functions, fuzzy logic is ...Today’s air combat has reached a high level of uncertainty where continuous or discrete variables with crisp values cannot be properly represented using fuzzy sets. With a set of membership functions, fuzzy logic is well-suited to tackle such complex states and actions. However, it is not necessary to fuzzify the variables that have definite discrete semantics.Hence, the aim of this study is to improve the level of model abstraction by proposing multiple levels of cascaded hierarchical structures from the perspective of function, namely, the functional decision tree. This method is developed to represent behavioral modeling of air combat systems, and its metamodel,execution mechanism, and code generation can provide a sound basis for function-based behavioral modeling. As a proof of concept, an air combat simulation is developed to validate this method and the results show that the fighter Alpha built using the proposed framework provides better performance than that using default scripts.展开更多
Dominant technology formation is the key for the hightech industry to“cross the chasm”and gain an established foothold in the market(and hence disrupt the regime).Therefore,a stimulus-response model is proposed to i...Dominant technology formation is the key for the hightech industry to“cross the chasm”and gain an established foothold in the market(and hence disrupt the regime).Therefore,a stimulus-response model is proposed to investigate the dominant technology by exploring its formation process and mechanism.Specifically,based on complex adaptive system theory and the basic stimulus-response model,we use a combination of agent-based modeling and system dynamics modeling to capture the interactions between dominant technology and the socio-technical landscape.The results indicate the following:(i)The dynamic interaction is“stimulus-reaction-selection”,which promotes the dominant technology’s formation.(ii)The dominant technology’s formation can be described as a dynamic process in which the adaptation intensity of technology standards increases continuously until it becomes the leading technology under the dual action of internal and external mechanisms.(iii)The dominant technology’s formation in the high-tech industry is influenced by learning ability,the number of adopting users and adaptability.Therein,a“critical scale”of learning ability exists to promote the formation of leading technology:a large number of adopting users can promote the dominant technology’s formation by influencing the adaptive response of technology standards to the socio-technical landscape and the choice of technology standards by the socio-technical landscape.There is a minimum threshold and a maximum threshold for the role of adaptability in the dominant technology’s formation.(iv)The socio-technical landscape can promote the leading technology’s shaping in the high-tech industry,and different elements have different effects.This study promotes research on the formation mechanism of dominant technology in the high-tech industry,presents new perspectives and methods for researchers,and provides essential enlightenment for managers to formulate technology strategies.展开更多
In the evolutionary game of the same task for groups,the changes in game rules,personal interests,the crowd size,and external supervision cause uncertain effects on individual decision-making and game results.In the M...In the evolutionary game of the same task for groups,the changes in game rules,personal interests,the crowd size,and external supervision cause uncertain effects on individual decision-making and game results.In the Markov decision framework,a single-task multi-decision evolutionary game model based on multi-agent reinforcement learning is proposed to explore the evolutionary rules in the process of a game.The model can improve the result of a evolutionary game and facilitate the completion of the task.First,based on the multi-agent theory,to solve the existing problems in the original model,a negative feedback tax penalty mechanism is proposed to guide the strategy selection of individuals in the group.In addition,in order to evaluate the evolutionary game results of the group in the model,a calculation method of the group intelligence level is defined.Secondly,the Q-learning algorithm is used to improve the guiding effect of the negative feedback tax penalty mechanism.In the model,the selection strategy of the Q-learning algorithm is improved and a bounded rationality evolutionary game strategy is proposed based on the rule of evolutionary games and the consideration of the bounded rationality of individuals.Finally,simulation results show that the proposed model can effectively guide individuals to choose cooperation strategies which are beneficial to task completion and stability under different negative feedback factor values and different group sizes,so as to improve the group intelligence level.展开更多
The multi-agent system is the optimal solution to complex intelligent problems. In accordance with the game theory, the concept of loyalty is introduced to analyze the relationship between agents' individual incom...The multi-agent system is the optimal solution to complex intelligent problems. In accordance with the game theory, the concept of loyalty is introduced to analyze the relationship between agents' individual income and global benefits and build the logical architecture of the multi-agent system. Besides, to verify the feasibility of the method, the cyclic neural network is optimized, the bi-directional coordination network is built as the training network for deep learning, and specific training scenes are simulated as the training background. After a certain number of training iterations, the model can learn simple strategies autonomously. Also,as the training time increases, the complexity of learning strategies rises gradually. Strategies such as obstacle avoidance, firepower distribution and collaborative cover are adopted to demonstrate the achievability of the model. The model is verified to be realizable by the examples of obstacle avoidance, fire distribution and cooperative cover. Under the same resource background, the model exhibits better convergence than other deep learning training networks, and it is not easy to fall into the local endless loop.Furthermore, the ability of the learning strategy is stronger than that of the training model based on rules, which is of great practical values.展开更多
Future unmanned battles desperately require intelli-gent combat policies,and multi-agent reinforcement learning offers a promising solution.However,due to the complexity of combat operations and large size of the comb...Future unmanned battles desperately require intelli-gent combat policies,and multi-agent reinforcement learning offers a promising solution.However,due to the complexity of combat operations and large size of the combat group,this task suffers from credit assignment problem more than other rein-forcement learning tasks.This study uses reward shaping to relieve the credit assignment problem and improve policy train-ing for the new generation of large-scale unmanned combat operations.We first prove that multiple reward shaping func-tions would not change the Nash Equilibrium in stochastic games,providing theoretical support for their use.According to the characteristics of combat operations,we propose tactical reward shaping(TRS)that comprises maneuver shaping advice and threat assessment-based attack shaping advice.Then,we investigate the effects of different types and combinations of shaping advice on combat policies through experiments.The results show that TRS improves both the efficiency and attack accuracy of combat policies,with the combination of maneuver reward shaping advice and ally-focused attack shaping advice achieving the best performance compared with that of the base-line strategy.展开更多
基金supported by the Key R&D Projects in Jiangsu Province(BE2021729)the Key Primary Research Project of Primary Strengthening Program(KYZYJKKCJC23001).
文摘Multi-agent systems often require good interoperability in the process of completing their assigned tasks.This paper first models the static structure and dynamic behavior of multiagent systems based on layered weighted scale-free community network and susceptible-infected-recovered(SIR)model.To solve the problem of difficulty in describing the changes in the structure and collaboration mode of the system under external factors,a two-dimensional Monte Carlo method and an improved dynamic Bayesian network are used to simulate the impact of external environmental factors on multi-agent systems.A collaborative information flow path optimization algorithm for agents under environmental factors is designed based on the Dijkstra algorithm.A method for evaluating system interoperability is designed based on simulation experiments,providing reference for the construction planning and optimization of organizational application of the system.Finally,the feasibility of the method is verified through case studies.
文摘Using a dynamic laser monitoring technique,the solubility of 3-nitro-1,2,4-triazole-5-one(NTO)was investigated in two different binary systems,namely hydroxylamine nitrate(HAN)-water and boric acid(HB)-water ranging from 278.15 K to 318.15 K.The solubility in each system was found to be positively correlated with temperature.Furthermore,solubility data were analyzed using four equations:the modified Apelblat equation,Van’t Hoff equation,λh equation and CNIBS/R-K equations,and they provided satisfactory results for both two systems.The average root-mean-square deviation(105RMSD)values for these models were less than 13.93.Calculations utilizing the Van’t Hoff equation and Gibbs equations facilitated the derivation of apparent thermodynamic properties of NTO dissolution in the two systems,including values for Gibbs free energy,enthalpy and entropy.The%ζ_(H)is larger than%ζ_(TS),and all the%ζ_(H)data are≥58.63%,indicating that the enthalpy make a greater contribution than entropy to theΔG_(soln)^(Θ).
文摘In order to enhance the control performance of piezo-positioning system,the influence of hysteresis characteristics and its compensation method are studied.Hammerstein model is used to represent the dynamic hysteresis nonlinear characteristics of piezo-positioning actuator.The static nonlinear part and dynamic linear part of the Hammerstein model are represented by models obtained through the Prandtl-Ishlinskii(PI)model and Hankel matrix system identification method,respectively.This model demonstrates good generalization capability for typical input frequencies below 200 Hz.A sliding mode inverse compensation tracking control strategy based on P-I inverse model and integral augmentation is proposed.Experimental results show that compared with PID inverse compensation control and sliding mode control without inverse compensation,the sliding mode inverse compensation control has a more ideal step response and no overshoot,moreover,the settling time is only 6.2 ms.In the frequency domain,the system closed-loop tracking bandwidth reaches 119.9 Hz,and the disturbance rejection bandwidth reaches 86.2 Hz.The proposed control strategy can effectively compensate the hysteresis nonlinearity,and improve the tracking accuracy and antidisturbance capability of piezo-positioning system.
基金Supported by the National Natural Science Foundation of China(62201293,62034003)the Open-Foundation of State Key Laboratory of Millimeter-Waves(K202313)the Jiangsu Province Youth Science and Technology Talent Support Project(JSTJ-2024-040)。
文摘In this paper,the small-signal modeling of the Indium Phosphide High Electron Mobility Transistor(InP HEMT)based on the Transformer neural network model is investigated.The AC S-parameters of the HEMT device are trained and validated using the Transformer model.In the proposed model,the eight-layer transformer encoders are connected in series and the encoder layer of each Transformer consists of the multi-head attention layer and the feed-forward neural network layer.The experimental results show that the measured and modeled S-parameters of the HEMT device match well in the frequency range of 0.5-40 GHz,with the errors versus frequency less than 1%.Compared with other models,good accuracy can be achieved to verify the effectiveness of the proposed model.
基金Project(42202318)supported by the National Natural Science Foundation of ChinaProject(252300421199)supported by the Natural Science Foundation of Henan Province,ChinaProject(2024JJ6219)supported by the Hunan Provincial Natural Science Foundation of China。
文摘The undrained mechanical behavior of unsaturated completely weathered granite(CWG)is highly susceptible to alterations in the hydraulic environment,particularly under uniaxial loading conditions,due to the unique nature of this soil type.In this study,a series of unconfined compression tests were carried out on unsaturated CWG soil in an underground engineering site,and the effects of varying the environmental variables on the main undrained mechanical properties were analyzed.Based on the experimental results,a novel constitutive model was then established using the damage mechanics theory and the undetermined coefficient method.The results demonstrate that the curves of remolded CWG specimens with different moisture contents and dry densities exhibited diverse characteristics,including brittleness,significant softening,and ductility.As a typical indicator,the unconfined compression strength of soil specimens initially increased with an increase in moisture content and then decreased.Meanwhile,an optimal moisture content of approximately 10.5%could be observed,while a critical moisture content value of 13.0%was identified,beyond which the strength of the specimen decreases sharply.Moreover,the deformation and fracture of CWG specimens were predominantly caused by shear failure,and the ultimate failure modes were primarily influenced by moisture content rather than dry density.Furthermore,by comparing several similar models and the experimental data,the proposed model could accurately replicate the undrained mechanical characteristics of unsaturated CWG soil,and quantitatively describe the key mechanical indexes.These findings offer a valuable reference point for understanding the underlying mechanisms,anticipating potential risks,and implementing effective control measures in similar underground engineering projects.
文摘This paper addresses the time-varying formation-containment(FC) problem for nonholonomic multi-agent systems with a desired trajectory constraint, where only the leaders can acquire information about the desired trajectory. Input the fixed time-varying formation template to the leader and start executing, this process also needs to track the desired trajectory, and the follower needs to converge to the convex hull that the leader crosses. Firstly, the dynamic models of nonholonomic systems are linearized to second-order dynamics. Then, based on the desired trajectory and formation template, the FC control protocols are proposed. Sufficient conditions to achieve FC are introduced and an algorithm is proposed to resolve the control parameters by solving an algebraic Riccati equation. The system is demonstrated to achieve FC, with the average position and velocity of the leaders converging asymptotically to the desired trajectory. Finally, the theoretical achievements are verified in simulations by a multi-agent system composed of virtual human individuals.
基金National Natural Science Foundation of China(71690233,71971213,71901214)。
文摘Architecture framework has become an effective method recently to describe the system of systems(SoS)architecture,such as the United States(US)Department of Defense Architecture Framework Version 2.0(DoDAF2.0).As a viewpoint in DoDAF2.0,the operational viewpoint(OV)describes operational activities,nodes,and resource flows.The OV models are important for SoS architecture development.However,as the SoS complexity increases,constructing OV models with traditional methods exposes shortcomings,such as inefficient data collection and low modeling standards.Therefore,we propose an intelligent modeling method for five OV models,including operational resource flow OV-2,organizational relationships OV-4,operational activity hierarchy OV-5a,operational activities model OV-5b,and operational activity sequences OV-6c.The main idea of the method is to extract OV architecture data from text and generate interoperable OV models.First,we construct the OV meta model based on the DoDAF2.0 meta model(DM2).Second,OV architecture named entities is recognized from text based on the bidirectional long short-term memory and conditional random field(BiLSTM-CRF)model.And OV architecture relationships are collected with relationship extraction rules.Finally,we define the generation rules for OV models and develop an OV modeling tool.We use unmanned surface vehicles(USV)swarm target defense SoS architecture as a case to verify the feasibility and effectiveness of the intelligent modeling method.
基金supported by the National Natural Science Foundation of China(52071012)the National Natural Science Foundation of China(Grant No.52101119)+5 种基金the Open Foundation of State Key Laboratory for Advanced Metals and Materials(2022-Z01)the Open Research Fund of National Key Laboratory of Advanced Casting Technologies(CAT2023-004)the Key Research and Development Program of Shandong Province(2022JMRH0209)Hebei Province Innovation Capability Enhancement Plan Project(No.244A7607D)the Beijing Municipal Natural Science Foundation(No.2214072)Young Elite Scientist Sponsorship Program by CAST(No.2021QNRC001)。
文摘Process of dynamic recrystallization(DRX)plays a crucial role in altering the microstructure and enhancing the mechanical characteristics of CrNiMoVW steel.However,its initiation mechanism,deformation conditions,and predictive models remain insufficiently understood,requiring further research to optimize the processing technology.In the present study,hot compression experiments were carried out on 30CrNiMoVW steel under deformation conditions with temperatures ranging from 950 to 1,250℃and strain rates from 0.001 to 1 s~(-1),during which true stress-strain curves were obtained.Based on friction and temperature corrections applied to these curves,a constitutive equation for 30CrNiMoVW steel was established,and its accuracy was verified through fitting analysis.Simultaneously,the study identified limitations in the initial volume fraction model,prompting the development of a modified recrystallization volume fraction model that was validated via correlation analysis between experimental data and model predictions.Furthermore,building upon the modified recrystallization volume fraction model,a novel recrystallization rate model was developed,and three characteristic strain points were determined.These points segmented the rate curve into three stages:a slow initiation stage(0,ε1),a rapid growth stage(1,ε3),and a slow equilibrium stage(e3,0.9).Notably,the value ofε3 was considered the most economical,ensuring the formation of fine and uniform grains during production while optimizing the process,reducing energy consumption and costs,and enhancing overall material performance.Finally,based on the physical constitutive relationships and kinetic models,a multiscale simulation approach combining the finite element method(FEM)and cellular automata(CA)was employed to predict the microstructural evolution of 30CrNiMoVW steel.The simulation results demonstrate that the FEM&CA approach can accurately reproduce the dynamic recrystallization behavior and microstructural evolution observed experimentally.This work provides critical guidance for the development of forging processes for 30CrNiMoVW steel.
文摘This study introduces a comprehensive theoretical framework for accurately calculating the electronic band-structure of strained long-wavelength InAs/GaSb type-Ⅱsuperlattices.Utilizing an eight-band k·p Hamilto⁃nian in conjunction with a scattering matrix method,the model effectively incorporates quantum confinement,strain effects,and interface states.This robust and numerically stable approach achieves exceptional agreement with experimental data,offering a reliable tool for analyzing and engineering the band structure of complex multi⁃layer systems.
基金supported by the National Natural Science Foundation of China (Grant No. 12302056)the Postdoctoral Fellowship Program of CPSF:GZC20233445。
文摘The precise characterization of hypersonic glide vehicle(HGV) maneuver laws in complex flight scenarios still faces challenges. Non-stationary changes in flight state due to abrupt changes in maneuver modes place high demands on the accuracy of modeling methods. To address this issue, a novel maneuver laws modeling and analysis method based on higher order multi-resolution dynamic mode decomposition(HMDMD) is proposed in this work. A joint time-space-frequency decomposition of the vehicle's state sequence in the complex flight scenario is achieved with the higher order Koopman assumption and standard multi-resolution dynamic mode decomposition, and an approximate dynamic model is established. The maneuver laws can be reconstructed and analyzed with extracted multi-scale spatiotemporal modes with clear physical meaning. Based on the dynamic model of HGV, two flight scenarios are established with constant angle of attack and complex maneuver laws, respectively. Simulation results demonstrate that the maneuver laws obtained using the HMDMD method are highly consistent with those derived from the real dynamic model, the modeling accuracy is better than other common modeling methods, and the method has strong interpretability.
基金National Natural Science Foundation of China(62161048)Sichuan Science and Technology Program(2022NSFSC0547,2022ZYD0109)。
文摘In this paper,a feature selection method for determining input parameters in antenna modeling is proposed.In antenna modeling,the input feature of artificial neural network(ANN)is geometric parameters.The selection criteria contain correlation and sensitivity between the geometric parameter and the electromagnetic(EM)response.Maximal information coefficient(MIC),an exploratory data mining tool,is introduced to evaluate both linear and nonlinear correlations.The EM response range is utilized to evaluate the sensitivity.The wide response range corresponding to varying values of a parameter implies the parameter is highly sensitive and the narrow response range suggests the parameter is insensitive.Only the parameter which is highly correlative and sensitive is selected as the input of ANN,and the sampling space of the model is highly reduced.The modeling of a wideband and circularly polarized antenna is studied as an example to verify the effectiveness of the proposed method.The number of input parameters decreases from8 to 4.The testing errors of|S_(11)|and axis ratio are reduced by8.74%and 8.95%,respectively,compared with the ANN with no feature selection.
文摘Aiming at the problem on cooperative air-defense of surface warship formation, this paper maps the cooperative airdefense system of systems (SoS) for surface warship formation (CASoSSWF) to the biological immune system (BIS) according to the similarity of the defense mechanism and characteristics between the CASoSSWF and the BIS, and then designs the models of components and the architecture for a monitoring agent, a regulating agent, a killer agent, a pre-warning agent and a communicating agent by making use of the theories and methods of the artificial immune system, the multi-agent system (MAS), the vaccine and the danger theory (DT). Moreover a new immune multi-agent model using vaccine based on DT (IMMUVBDT) for the cooperative air-defense SoS is advanced. The immune response and immune mechanism of the CASoSSWF are analyzed. The model has a capability of memory, evolution, commendable dynamic environment adaptability and self-learning, and embodies adequately the cooperative air-defense mechanism for the CASoSSWF. Therefore it shows a novel idea for the CASoSSWF which can provide conception models for a surface warship formation operation simulation system.
文摘The development process of complex equipment involves multi-stage business processes,multi-level product architecture,and multi-disciplinary physical processes.The relationship between its system model and various disciplinary models is extremely complicated.In the modeling and integration process,extensive customized development is needed to realize model integration and interoperability in different business scenarios.Meanwhile,the differences in modeling and interaction between different modeling tools make it difficult to support the consistent representation of models in complex scenarios.To improve the efficiency of system modeling and integration in complex business scenarios,a system modeling and integration method was proposed.This method took the Sys ML language kernel as the core and system model function integration as the main line.Through the technical means of model view separation,abstract operation interface,and model view configuration,the model modeling and integration of multi-user,multi-model,multi-view,and different business logic in complex business scenarios were realized.
基金This work was supported by the National Natural Science Foundation of China(62003359).
文摘Today’s air combat has reached a high level of uncertainty where continuous or discrete variables with crisp values cannot be properly represented using fuzzy sets. With a set of membership functions, fuzzy logic is well-suited to tackle such complex states and actions. However, it is not necessary to fuzzify the variables that have definite discrete semantics.Hence, the aim of this study is to improve the level of model abstraction by proposing multiple levels of cascaded hierarchical structures from the perspective of function, namely, the functional decision tree. This method is developed to represent behavioral modeling of air combat systems, and its metamodel,execution mechanism, and code generation can provide a sound basis for function-based behavioral modeling. As a proof of concept, an air combat simulation is developed to validate this method and the results show that the fighter Alpha built using the proposed framework provides better performance than that using default scripts.
基金supported by the Shanghai Philosophy and Social Science Foundation(2022ECK004)Shanghai Soft Science Research Project(23692123400)。
文摘Dominant technology formation is the key for the hightech industry to“cross the chasm”and gain an established foothold in the market(and hence disrupt the regime).Therefore,a stimulus-response model is proposed to investigate the dominant technology by exploring its formation process and mechanism.Specifically,based on complex adaptive system theory and the basic stimulus-response model,we use a combination of agent-based modeling and system dynamics modeling to capture the interactions between dominant technology and the socio-technical landscape.The results indicate the following:(i)The dynamic interaction is“stimulus-reaction-selection”,which promotes the dominant technology’s formation.(ii)The dominant technology’s formation can be described as a dynamic process in which the adaptation intensity of technology standards increases continuously until it becomes the leading technology under the dual action of internal and external mechanisms.(iii)The dominant technology’s formation in the high-tech industry is influenced by learning ability,the number of adopting users and adaptability.Therein,a“critical scale”of learning ability exists to promote the formation of leading technology:a large number of adopting users can promote the dominant technology’s formation by influencing the adaptive response of technology standards to the socio-technical landscape and the choice of technology standards by the socio-technical landscape.There is a minimum threshold and a maximum threshold for the role of adaptability in the dominant technology’s formation.(iv)The socio-technical landscape can promote the leading technology’s shaping in the high-tech industry,and different elements have different effects.This study promotes research on the formation mechanism of dominant technology in the high-tech industry,presents new perspectives and methods for researchers,and provides essential enlightenment for managers to formulate technology strategies.
基金supported by the National Key R&D Program of China(2017YFB1400105).
文摘In the evolutionary game of the same task for groups,the changes in game rules,personal interests,the crowd size,and external supervision cause uncertain effects on individual decision-making and game results.In the Markov decision framework,a single-task multi-decision evolutionary game model based on multi-agent reinforcement learning is proposed to explore the evolutionary rules in the process of a game.The model can improve the result of a evolutionary game and facilitate the completion of the task.First,based on the multi-agent theory,to solve the existing problems in the original model,a negative feedback tax penalty mechanism is proposed to guide the strategy selection of individuals in the group.In addition,in order to evaluate the evolutionary game results of the group in the model,a calculation method of the group intelligence level is defined.Secondly,the Q-learning algorithm is used to improve the guiding effect of the negative feedback tax penalty mechanism.In the model,the selection strategy of the Q-learning algorithm is improved and a bounded rationality evolutionary game strategy is proposed based on the rule of evolutionary games and the consideration of the bounded rationality of individuals.Finally,simulation results show that the proposed model can effectively guide individuals to choose cooperation strategies which are beneficial to task completion and stability under different negative feedback factor values and different group sizes,so as to improve the group intelligence level.
基金supported by the National Natural Science Foundation of China(61503407,61806219,61703426,61876189,61703412)the China Postdoctoral Science Foundation(2016 M602996)。
文摘The multi-agent system is the optimal solution to complex intelligent problems. In accordance with the game theory, the concept of loyalty is introduced to analyze the relationship between agents' individual income and global benefits and build the logical architecture of the multi-agent system. Besides, to verify the feasibility of the method, the cyclic neural network is optimized, the bi-directional coordination network is built as the training network for deep learning, and specific training scenes are simulated as the training background. After a certain number of training iterations, the model can learn simple strategies autonomously. Also,as the training time increases, the complexity of learning strategies rises gradually. Strategies such as obstacle avoidance, firepower distribution and collaborative cover are adopted to demonstrate the achievability of the model. The model is verified to be realizable by the examples of obstacle avoidance, fire distribution and cooperative cover. Under the same resource background, the model exhibits better convergence than other deep learning training networks, and it is not easy to fall into the local endless loop.Furthermore, the ability of the learning strategy is stronger than that of the training model based on rules, which is of great practical values.
文摘Future unmanned battles desperately require intelli-gent combat policies,and multi-agent reinforcement learning offers a promising solution.However,due to the complexity of combat operations and large size of the combat group,this task suffers from credit assignment problem more than other rein-forcement learning tasks.This study uses reward shaping to relieve the credit assignment problem and improve policy train-ing for the new generation of large-scale unmanned combat operations.We first prove that multiple reward shaping func-tions would not change the Nash Equilibrium in stochastic games,providing theoretical support for their use.According to the characteristics of combat operations,we propose tactical reward shaping(TRS)that comprises maneuver shaping advice and threat assessment-based attack shaping advice.Then,we investigate the effects of different types and combinations of shaping advice on combat policies through experiments.The results show that TRS improves both the efficiency and attack accuracy of combat policies,with the combination of maneuver reward shaping advice and ally-focused attack shaping advice achieving the best performance compared with that of the base-line strategy.