期刊文献+
共找到1,733篇文章
< 1 2 87 >
每页显示 20 50 100
Robust Corner Detection Based on Multi-scale Curvature Product in B-spline Scale Space 被引量:3
1
作者 WANG Yu-Zhu YANG Dan ZHANG Xiao-Hong 《自动化学报》 EI CSCD 北大核心 2007年第4期414-417,共4页
这份报纸在 B 花键弯曲规模空间的框架论述一种多尺度的弯曲产品角落察觉技术。规模产品功能在不同规模从轮廓的弯曲产品被导出。角落被 thresholding 作为本地最大值构造越过几规模的弯曲产品结果。通过规模产品,本地化精确性和察觉... 这份报纸在 B 花键弯曲规模空间的框架论述一种多尺度的弯曲产品角落察觉技术。规模产品功能在不同规模从轮廓的弯曲产品被导出。角落被 thresholding 作为本地最大值构造越过几规模的弯曲产品结果。通过规模产品,本地化精确性和察觉表演能显著地以 CNN 标准被改进。实验也证明那个建议方法显示出坚韧性到高频率细节并且提供有希望的察觉结果。 展开更多
关键词 曲线 刻度 自动化技术 小波
在线阅读 下载PDF
嵌入自适应空间注意力的Scaled-YOLOv4小目标检测模型
2
作者 张家源 窦全胜 唐焕玲 《计算机应用与软件》 北大核心 2025年第6期218-224,240,共8页
针对目标检测方法中网络采用固定感受野使卷积提取特征时只关注常规尺寸目标而忽略小目标的特征造成检测精度低的问题,提出自适应空间注意力机制,增加并行的不同大小卷积核,嵌入Scaled-YOLOv4残差结构的3×3卷积层中,使网络根据不... 针对目标检测方法中网络采用固定感受野使卷积提取特征时只关注常规尺寸目标而忽略小目标的特征造成检测精度低的问题,提出自适应空间注意力机制,增加并行的不同大小卷积核,嵌入Scaled-YOLOv4残差结构的3×3卷积层中,使网络根据不同的尺寸的物体自主调节感受野大小加强对小目标特征的提取。实验结果表明,新的网络模型能有效提升小目标的检测精度,并改善原模型存在的误检和漏检问题。在MSCOCO和PASCAL VOC等数据集上的检测精度均比之前有较大提升。 展开更多
关键词 小目标检测 scaled-YOLOv4 深度学习 注意力机制 自适应感受野
在线阅读 下载PDF
Bayesian Saliency Detection for RGB-D Images 被引量:1
3
作者 Songtao Wang Zhen Zhou +1 位作者 Hanbing Qu Bin Li 《自动化学报》 EI CSCD 北大核心 2017年第10期1810-1828,共19页
关键词 贝叶斯定理 检测模型 显著性 图像 期望最大化算法 分布计算 特征映射 高斯分布
在线阅读 下载PDF
ObjectBoxG:基于GC3模块的目标检测算法
4
作者 张建宇 谢娟英 《智能系统学报》 CSCD 北大核心 2024年第6期1385-1394,共10页
随着对目标检测任务研究的不断深入,以ObjectBox检测器为代表的无锚框方法引起了研究者们的关注。然而,ObjectBox检测器不能充分利用多尺度特征,也未充分考虑目标中心点与全局信息关联。为此,借助图卷积神经网络的节点相互影响原理,提... 随着对目标检测任务研究的不断深入,以ObjectBox检测器为代表的无锚框方法引起了研究者们的关注。然而,ObjectBox检测器不能充分利用多尺度特征,也未充分考虑目标中心点与全局信息关联。为此,借助图卷积神经网络的节点相互影响原理,提出基于图谱方法的图卷积层模块GConv(graph convolution layer),学习图像全局特征;融合模块GConv与C3(cross stage partial network with 3 convolutions)得到GC3(graph C3 module)模块,进一步提取图像原始特征、细节特征以及全局特征;将GC3结合广义特征金字塔网络GFPN(generalized feature pyramid network),提出图广义特征金字塔网络GGFPN(graph generalized feature pyramid network),并嵌入ObjectBox算法,设计出ObjectBoxG算法。经典数据集的实验测试表明,提出的GC3模块比原C3模块具有更强特征提取能力;提出的GGFPN网络比GC3的特征学习能力更强;提出的ObjectBoxG算法具有优良的目标检测性能。 展开更多
关键词 图卷积神经网络 特征提取 特征融合 目标检测 深度学习 无锚框方法 特征金字塔网络 object-Box检测器 多尺度特征 全局特征
在线阅读 下载PDF
LMUAV-YOLOv8:低空无人机视觉目标检测轻量化网络 被引量:6
5
作者 董一兵 曾辉 侯少杰 《计算机工程与应用》 北大核心 2025年第3期94-110,共17页
针对低空无人机目标检测面临目标尺度变化大、小目标容易漏检和误检的挑战,发展了一种融合多尺度特征的目标检测轻量化网络(LMUAV-YOLOv8),通过开展消融和对比实验,验证了算法的有效性和先进性,并借助类激活图,对模型的决策过程进行了... 针对低空无人机目标检测面临目标尺度变化大、小目标容易漏检和误检的挑战,发展了一种融合多尺度特征的目标检测轻量化网络(LMUAV-YOLOv8),通过开展消融和对比实验,验证了算法的有效性和先进性,并借助类激活图,对模型的决策过程进行了解释。设计了一种轻量化的特征融合网络(UAV_RepGFPN),提出新的特征融合路径以及特征融合模块DBB_GELAN,降低参数量和计算量的同时,提高特征融合网络的性能。使用部分卷积(PConv)和三重注意力机制(Triplet Attention)构建特征提取模块(FTA_C2f),并引入ADown下采样模块,通过对输入特征图维度的重新排列和细粒度调整,以提升模型中深层网络对空间特征的捕捉能力,并进一步降低参数量和计算量。优化YOLOv9的可编程梯度信息(programmable gradient information,PGI)策略,设计基于上下文引导(Context_guided)的可逆架构,并额外生成三个辅助检测头,提出UAV_PGI可编程梯度方法,避免传统深度监督中多路径特征集成可能导致的语义信息损失。为了验证模型的有效性及泛化能力,在VisDrone 2019测试集上开展了对比实验,结果显示,与YOLOv8s相比,LMUAV-YOLOv8s的准确度、召回率、mAP@0.5和mAP@0.5:0.95等指标分别提升了4.2、3.9、5.1和3.0个百分点,同时参数量减少了63.9%,计算量仅增加0.4 GFLOPs,实现了检测性能与资源消耗的良好平衡。基于NVIDIA Jetson Xavier NX嵌入式平台的推理实验结果显示:与基线模型相比,该算法能够在满足实时检测要求的条件下,获得更高的检测精度,对于无人机实时目标检测场景具有较好的适用性。借助类激活图,对算法的决策过程进行了可视化分析,结果表明,该模型具备更优异的小尺度特征提取和高分辨率处理能力。 展开更多
关键词 小目标检测 多尺度 轻量化 YOLOv8 可编程梯度信息
在线阅读 下载PDF
基于UMS-YOLO v7的面向样本不均衡的水下生物多尺度目标检测方法 被引量:3
6
作者 张明华 黄基萍 +2 位作者 宋巍 肖启华 赵丹枫 《农业机械学报》 北大核心 2025年第1期388-396,409,共10页
针对水下目标检测面临着生物尺度变化大以及样本不均衡的问题,本文提出一种水下生物多尺度目标检测方法(Underwater multi-scale-YOLO v7,UMS-YOLO v7)。首先,设计一种由可切换空洞卷积组成的特征提取模块,该模块可在不同大小的感受野... 针对水下目标检测面临着生物尺度变化大以及样本不均衡的问题,本文提出一种水下生物多尺度目标检测方法(Underwater multi-scale-YOLO v7,UMS-YOLO v7)。首先,设计一种由可切换空洞卷积组成的特征提取模块,该模块可在不同大小的感受野上捕获多尺度目标特征,使得提取的特征信息更加全面;其次,使用轻量级的上采样算子融合上下文信息,提高模型对目标的特征学习能力;最后,通过结合Wise-IoU和归一化Wasserstein距离两种相似性度量,提高了不同尺度目标的定位精度,同时降低了多尺度样本分布不均衡对模型的影响。实验结果表明,该模型相较于当前其他模型在检测精度方面表现出明显的提升,在RUOD和DUO数据集上平均精度均值分别达到64.5%和68.9%。与YOLO v7模型相比,UMS-YOLO v7提高了多种尺度目标检测精度,在DUO数据集上,针对大、中、小3种尺度目标平均精度均值分别提升8.3、4.8、12.5个百分点,其中小目标提升效果最为显著。与现有的其他模型相比,改进的模型具有更高的检测精度,更适用于水下生物多尺度目标检测任务,并且针对不同数据分布的样本具有泛化性和鲁棒性。 展开更多
关键词 水下生物 多尺度目标检测 YOLO v7 空洞卷积 上采样算子 相似性度量
在线阅读 下载PDF
SCE-YOLO:改进YOLOv8的轻量级无人机视觉检测算法 被引量:2
7
作者 张帅 王波涛 +1 位作者 涂嘉怡 陈聪实 《计算机工程与应用》 北大核心 2025年第13期100-112,共13页
针对无人机航拍场景下的目标检测模型计算复杂、检测效果不佳等问题,提出一种改进YOLOv8的轻量级无人机目标检测算法SCE-YOLO。使用STA_C2f替换骨干网络中的C2f模块,提高模型的特征提取能力;将采用渐进重参数化方法改进的AIFI模块作为... 针对无人机航拍场景下的目标检测模型计算复杂、检测效果不佳等问题,提出一种改进YOLOv8的轻量级无人机目标检测算法SCE-YOLO。使用STA_C2f替换骨干网络中的C2f模块,提高模型的特征提取能力;将采用渐进重参数化方法改进的AIFI模块作为空间金字塔池化层,实现高质量的尺度特征交互;提出一种多尺度特征聚合扩散网络UAV_CFDPN,根据航拍小目标的尺度特征优化网络结构,设计特征聚合模块FAM以及新的特征聚合与扩散路径,使得模型获得丰富的多尺度特征和上下文信息,提高目标检测的尺度适应性;设计一种高效共享卷积模块ES-Head,在保持定位和分类能力的同时,使得模型更加轻量高效。在VisDrone2019数据集上进行测试,实验结果表明,相较于YOLOv8s,虽然提出的SCE-YOLO算法mAP50减少0.5个百分点,但参数量和计算量仅为YOLOv8s的10.0%和48.8%,在检测精度和轻量化方面相较于其他先进算法具有明显的优势。 展开更多
关键词 目标检测 YOLOv8 多尺度特征 特征聚合 轻量化
在线阅读 下载PDF
DPRT-YOLO:智能网联汽车复杂驾驶环境实时目标检测器 被引量:1
8
作者 董一兵 曾辉 +2 位作者 李建科 侯少杰 石磊 《计算机工程与应用》 北大核心 2025年第14期148-162,共15页
目标检测是智能网联汽车视觉感知系统的一项基本任务,可为先进驾驶辅助系统提供基础数据和决策依据。然而,在低光照和恶劣天气等复杂环境中,车载目标检测算法面临小目标检测性能不佳、漏检率和误检率偏高的挑战。针对这一挑战,发展了一... 目标检测是智能网联汽车视觉感知系统的一项基本任务,可为先进驾驶辅助系统提供基础数据和决策依据。然而,在低光照和恶劣天气等复杂环境中,车载目标检测算法面临小目标检测性能不佳、漏检率和误检率偏高的挑战。针对这一挑战,发展了一种面向智能网联汽车的实时目标检测器(DPRT-YOLO),通过对流行的YOLOv10模型进行改造,使其更加适用于复杂驾驶环境中的目标检测任务,并通过在NVIDIA边缘计算平台上开展消融和对比实验,验证了算法的有效性。设计了增强加权多分支特征融合网络(EWMFFN),引入浅层加权融合和多分支加权融合模块,消除特征融合过程中的层间干扰,设计星形拓扑特征交互结构,提升模型对小尺度目标的检测能力,同时保持了网络结构的轻量化设计。融合卷积门控线性单元(convolutional gated linear units,CGLU)与卷积加法自注意力(convolutional additive token mixer,CATM),通过局部-全局双通路机制建立小目标尺度信息的长期上下文关系并保持模型的轻量化。为了评估模型在真实算力场景中的检测性能,将其部署在NVIDIA Jetson Xavier Nx平台上,采用NVIDIA TensorRT FP16量化加速,在BDD100K和TT100K测试集上开展推理实验,并与基准模型进行对比,结果显示:(1)检测精度方面,与YOLOv10n和YOLO11n相比,改进模型的mAP@0.5指标分别提升了6.1和7.4个百分点,mAP@0.5:0.95指标分别提升了3.6和4.2个百分点,同时,参数量分别降低了26.1%和34.9%。(2)检测速度方面,改进模型Small和Nano两种版本的推理速度分别达到了29 FPS和35 FPS。实验结果表明:与参考模型相比,改进算法在复杂驾驶环境中的表现更加优异,在检测精度与检测速度之间达到了更好的平衡,适于部署在智能网联汽车的环境感知系统中。 展开更多
关键词 实时目标检测 复杂驾驶环境 DPRT-YOLO 多尺度特征融合 TRANSFORMER
在线阅读 下载PDF
基于动态自适应通道注意力特征融合的小目标检测 被引量:2
9
作者 吴迪 赵品懿 +2 位作者 甘升隆 沈学军 万琴 《电子科技大学学报》 北大核心 2025年第2期221-232,共12页
针对小目标检测中卷积操作导致检测特征缺失和不同尺度语义隔阂的问题,提出一种基于动态自适应通道注意力特征融合的小目标检测方法。1)提出一种多尺度三角动态颈(Tri-Neck)网络结构,用于融合多尺度特征语义隔阂及弥补小目标特征缺失的... 针对小目标检测中卷积操作导致检测特征缺失和不同尺度语义隔阂的问题,提出一种基于动态自适应通道注意力特征融合的小目标检测方法。1)提出一种多尺度三角动态颈(Tri-Neck)网络结构,用于融合多尺度特征语义隔阂及弥补小目标特征缺失的问题。2)提出一种分组批量动态自适应通道注意力模块,增强弱语义小目标特征同时抑制无用信息,且在动态自适应通道注意力模块中设计新的激活函数和交并比损失函数,提升通道注意力表征能力。3)采用ResNet50作为骨干网络依次连接特征金字塔网络和Tri-Neck网络。实验结果表明,该方法在Pascal Voc 2007、Pascal Voc 2012上比YOLOv8算法mAP分别提升5.3%和6.2%,在MS COCO 2017数据集上AP和AP_S分别提升1.6%和2%,在SODA-D数据集上比YOLOv8算法AP提升0.9%。 展开更多
关键词 小目标检测 多尺度融合特征 特征金字塔 动态通道注意力 交并比损失函数
在线阅读 下载PDF
基于进化多任务的稀疏大规模多目标优化 被引量:1
10
作者 梁正平 王侃 +2 位作者 周倩 王继刚 朱泽轩 《计算机学报》 北大核心 2025年第2期358-380,共23页
稀疏大规模多目标优化存在稀疏位置探测困难、搜索空间巨大等诸多挑战,现有为数不多的稀疏大规模多目标优化算法在稀疏位置的探测准确率和非零决策变量的优化程度方面尚存在较大提升空间.为进一步提升稀疏大规模多目标优化的性能,本文... 稀疏大规模多目标优化存在稀疏位置探测困难、搜索空间巨大等诸多挑战,现有为数不多的稀疏大规模多目标优化算法在稀疏位置的探测准确率和非零决策变量的优化程度方面尚存在较大提升空间.为进一步提升稀疏大规模多目标优化的性能,本文从辅助任务构建与优化、辅助任务重新初始化、知识迁移等三个方面,提出了基于进化多任务优化的稀疏大规模多目标优化算法(Evolutionary Multi-Task for Sparse Large-scale Multi-objective Op⁃timization,SLMO-EMT).其中,辅助任务构建与优化方面,基于主任务精英解的稀疏分布,采用两种不同的方式对决策变量的搜索空间进行限定,构建分别用于对稀疏位置和非零决策变量进行降维优化的两个辅助任务.辅助任务重新初始化方面,根据辅助任务在历史迭代中的知识迁移效果,对其搜索空间和当前种群进行更新,以使辅助任务可持续促进主任务的进化.知识迁移方面,首先基于轮询方式和各辅助任务的知识迁移概率,挑选用于知识迁移的辅助任务,再基于相似度挑选适合的知识受体,最后在子代生成过程中采用迁移知识引导的局部交叉,借助辅助任务的知识促进主任务的进化.为验证SLMO-EMT的性能,将其与8个先进的稀疏大规模多目标优化算法在1000-10000维的32个基准测试实例,以及8个应用测试实例上进行对比,实验结果表明SLMO-EMT对于稀疏大规模多目标优化问题的求解具有明显的竞争优势.SLMO-EMT的源代码已在Github上公开:https://github.com/CIA-SZU/WK. 展开更多
关键词 稀疏大规模多目标优化 进化多任务 辅助任务 知识迁移
在线阅读 下载PDF
融合多尺度特征与注意力的小样本目标检测 被引量:1
11
作者 张英俊 甘望阳 +1 位作者 谢斌红 张睿 《小型微型计算机系统》 北大核心 2025年第3期689-696,共8页
针对现有小样本目标检测模型存在的尺度变化问题,支持集与查询集之间的外观变化、遮挡导致的误检与漏检问题,本文提出一种融合多尺度特征与注意力的小样本目标检测模型.首先,采用ResNet-101网络进行特征提取,同时引入ASPP(Atrous Spatia... 针对现有小样本目标检测模型存在的尺度变化问题,支持集与查询集之间的外观变化、遮挡导致的误检与漏检问题,本文提出一种融合多尺度特征与注意力的小样本目标检测模型.首先,采用ResNet-101网络进行特征提取,同时引入ASPP(Atrous Spatial Pyramid Pooling)模块获取不同的感受野,以捕获目标细节信息的多尺度特征.其次,采用Bi-FPN网络进行多尺度特征融合,获得更具代表性的查询特征与支持特征,有效缓解尺度变化问题.然后,利用提出的注意力引导特征增强模块对查询特征与支持特征进行自身关注,使得它们具有更好的判别能力,由此促进查询特征与支持特征的融合,以更好地应对外观变化和遮挡带来的挑战,从而缓解误检、漏检问题.最后,将分类头与边界框回归头进行解耦,分别对RPN网络基于细粒度查询特征产生的候选区域进行目标分类与目标定位.在PASCAL VOC与MS COCO数据集上的实验结果表明,所提模型的检测性能优于主流的小样本目标检测模型,相较于基线模型DCNet,mAP平均分别提升了3.5%与2.1%. 展开更多
关键词 小样本学习 元学习 目标检测 多尺度特征融合 注意力机制
在线阅读 下载PDF
融合多尺度交叉注意力和边缘感知的伪装目标检测 被引量:1
12
作者 郝子强 张庆宝 +2 位作者 赵世豪 王焯豪 詹伟达 《计算机工程与应用》 北大核心 2025年第10期228-237,共10页
针对当前伪装目标检测算法无法准确、完整地检测出目标对象和其边缘的问题,提出了一种融合多尺度交叉注意力和边缘感知的伪装目标检测网络(multi-scale cross attention and edge perception network,MAEP-Net)。利用Res2Net-50提取图... 针对当前伪装目标检测算法无法准确、完整地检测出目标对象和其边缘的问题,提出了一种融合多尺度交叉注意力和边缘感知的伪装目标检测网络(multi-scale cross attention and edge perception network,MAEP-Net)。利用Res2Net-50提取图像的原始特征,并采用融合了多尺度交叉注意力的特征金字塔结构从通道、空间两个维度挖掘目标位置信息和凸显伪装目标区域特征;使用定位模块对目标的大致位置进行准确定位;边缘感知模块抑制低级特征中背景的噪声,融合边缘特征以获取更多的边缘细节信息;细化模块通过注意力机制分别从前景和背景两个方向关注目标线索,利用边缘先验、语义先验、领域先验、区域先验知识进一步细化目标结构和边缘轮廓。在3个公开数据集上的实验表明,所提算法相较于12种主流算法在4个客观评价指标上均取得了最优表现,尤其是在COD10K数据集上所提算法的加权平均值F-measure和平均绝对误差(mean absolute error,MAE)分别达到0.797和0.031。由此可见,所提算法在COD任务上具有较好的检测效果。 展开更多
关键词 多尺度交叉注意力 边缘感知 伪装目标检测 特征金字塔结构
在线阅读 下载PDF
改进YOLOv8的无人机航拍小目标检测算法 被引量:1
13
作者 许景科 索祥龙 周磊 《计算机工程与应用》 北大核心 2025年第11期119-131,共13页
在无人机航拍图像目标检测任务中,存在小目标多且分布密集,目标背景复杂,类别样本数量不平衡,无人机算力偏低等问题。为此提出一种改进YOLOv8的算法MFF-YOLOv8(multi-feature fusion YOLOv8)。在C2f模块的Bottleneck模块中融合可变形卷... 在无人机航拍图像目标检测任务中,存在小目标多且分布密集,目标背景复杂,类别样本数量不平衡,无人机算力偏低等问题。为此提出一种改进YOLOv8的算法MFF-YOLOv8(multi-feature fusion YOLOv8)。在C2f模块的Bottleneck模块中融合可变形卷积DCNv3(deformable convolution v3),增强模型主干部分的特征提取能力。设计了一种新的MFFPN(multi-feature fusion pyramid network)特征融合网络结构,增加更多特征融合路线,保留更多的底层特征图细节和特征,提高模型对小目标的检测能力。增加P2小目标检测层并优化原有的P5检测层,增强了对小目标的检测精度并降低参数量。最后,引入动态头Dyhead(dynamic head)进一步增强模型的检测精度,在Visdrone2019公共数据集的实验中,MFF-YOLOv8s算法的检测精度mAP50和mAP50:95相比YOLOv8s分别提高10.2个百分点和7.1个百分点,参数量降低77.04%,检测精度超越YOLOv11,满足了无人机平台对精度和轻量化的需求。 展开更多
关键词 YOLOv8 小目标检测 多尺度特征融合 轻量化
在线阅读 下载PDF
融合注意力和上下文信息的遥感图像小目标检测算法 被引量:2
14
作者 刘赏 周煜炜 +2 位作者 代娆 董林芳 刘猛 《计算机应用》 北大核心 2025年第1期292-300,共9页
对多尺度的遥感图像进行小目标检测时,基于深度学习的目标检测算法容易出现误检和漏检的情况。这是因为此类算法的特征提取模块进行了多次的下采样操作;而且未能根据不同类别、不同尺度的目标关注所需的上下文信息。为了解决该问题,提... 对多尺度的遥感图像进行小目标检测时,基于深度学习的目标检测算法容易出现误检和漏检的情况。这是因为此类算法的特征提取模块进行了多次的下采样操作;而且未能根据不同类别、不同尺度的目标关注所需的上下文信息。为了解决该问题,提出一种融合注意力和上下文信息的遥感图像小目标检测算法ACM-YOLO(Attention-Context-Multiscale YOLO)。首先,应用细粒度的查询感知稀疏注意力以减少小目标特征信息的丢失,从而避免漏检;其次,设计局部上下文增强(LCE)函数以更好地关注不同类别的遥感目标所需的上下文信息,从而避免误检;最后,使用加权双向特征金字塔网络(BiFPN)强化特征融合模块对遥感图像小目标的多尺度特征融合能力,从而改善算法检测效果。在DOTA数据集和NWPU VHR-10数据集上进行对比实验和消融实验,以验证所提算法的有效性和泛化性。实验结果表明,在2个数据集上所提算法的平均精确率均值(mAP)分别达到了77.33%和96.12%,而相较于YOLOv5算法,召回率分别提升了10.00和7.50个百分点。可见,所提算法能有效提升mAP和召回率,减少误检和漏检。 展开更多
关键词 遥感图像 小目标检测 稀疏采样 局部上下文信息增强 多尺度特征融合
在线阅读 下载PDF
基于改进YOLOv8的道路交通小目标车辆检测算法 被引量:4
15
作者 火久元 苏泓瑞 +1 位作者 武泽宇 王婷娟 《计算机工程》 北大核心 2025年第1期246-257,共12页
针对交通道路中小目标车辆存在的识别困难、检测精度低以及误检和漏检等问题,提出一种基于YOLOv8算法的大内核、多尺度梯度组合的道路交通小目标车辆检测模型RGGE-YOLOv8。首先,使用RepLayer模型替换YOLOv8网络的主干部分,引入大内核深... 针对交通道路中小目标车辆存在的识别困难、检测精度低以及误检和漏检等问题,提出一种基于YOLOv8算法的大内核、多尺度梯度组合的道路交通小目标车辆检测模型RGGE-YOLOv8。首先,使用RepLayer模型替换YOLOv8网络的主干部分,引入大内核深度可分离卷积结构,拓展上下文信息,以增强模型对小目标的信息捕获能力;其次,使用GIoU代替原损失函数,解决IoU在预测框与真实框没有重叠时存在的无法优化问题;然后,引入全局注意力机制(GAM),通过减少信息丢失并增强全局交互信息来提高网络的特征表达能力;最后,引入CSPNet并重参化梯度组合特征金字塔,使得模型具有较大感受野和高形状偏差。实验结果表明,RGGE-YOLOv8在Visdrone数据集和自有数据集上mAP@0.5指标分别达到34.8%和94.7%,相较于原始YOLOv8n算法精度分别提高了2.2和5.51百分点,证明了RGGE-YOLOv8模型对道路小目标车辆检测的有效性。 展开更多
关键词 YOLOv8 小目标检测 深度学习 多尺度特征金字塔 注意力机制
在线阅读 下载PDF
多尺度反向校正增强和无损下采样的毫米波图像目标检测方法 被引量:1
16
作者 叶学义 韩卓 +2 位作者 蒋甜甜 王佳欣 陈华华 《电子测量与仪器学报》 北大核心 2025年第4期50-61,共12页
针对毫米波图像中隐匿目标局部信噪比低导致检测障碍的问题,提出了一种基于多尺度反向校正增强和无损下采样的检测方法。首先设计了一种多尺度反向校正特征增强模块,在提取多尺度特征的多卷积核Res2Net上融合反向校正操作,实现大感受野... 针对毫米波图像中隐匿目标局部信噪比低导致检测障碍的问题,提出了一种基于多尺度反向校正增强和无损下采样的检测方法。首先设计了一种多尺度反向校正特征增强模块,在提取多尺度特征的多卷积核Res2Net上融合反向校正操作,实现大感受野区域对区域内相关小感受野区域卷积计算的反向校正,使得深度模型不仅能够获取更细粒度的特征,而且使宏观判别性表示贯穿多个尺度的特征信息;其次,利用非跨步卷积层的SPD-Conv实现无损下采样,缓解卷积下采样导致的信息丢失;最后,采用K-means++聚类算法生成适合隐匿目标检测任务的新锚框。实验在YOLO系列中选择了各方面性能都适中的YOLOv5s作为基础框架,针对现有的两种毫米波图像数据集(阵列图像集和线扫图像集)平均精度均值(mAP)mAP@0.5分别达到了96.21%和97.97%,相较于原版YOLOv5s以及YOLO其他系列等性能有显著提升。实验结果表明,该方法在不明显增加参数量和推理时间的同时,能够有效提升深度模型的检测性能。 展开更多
关键词 隐匿目标检测 主动毫米波图像 多尺度反向校正特征增强 无损下采样 K-means++
在线阅读 下载PDF
多任务联合学习下的复杂天气航拍图像目标检测算法 被引量:2
17
作者 王新蕾 王硕 +2 位作者 翟嘉政 肖瑞林 廖晨旭 《计算机工程与应用》 北大核心 2025年第2期97-111,共15页
针对雨雾等复杂天气下无人机图像质量下降导致目标检测效果不佳的问题,提出基于上下文引导和提示学习的目标检测算法CGP-YOLO(context-guided and prompt-based YOLOv8)。构建一个多任务联合学习的检测网络,通过双分支结构达到平衡图像... 针对雨雾等复杂天气下无人机图像质量下降导致目标检测效果不佳的问题,提出基于上下文引导和提示学习的目标检测算法CGP-YOLO(context-guided and prompt-based YOLOv8)。构建一个多任务联合学习的检测网络,通过双分支结构达到平衡图像检测和恢复的任务。提出基于提示学习的跨层注意力加权图像去噪分支,指导网络利用退化提示重构清晰的图像;模型主干设计基于上下文的残差采样模块,集成卷积注意力机制,综合目标的局部和全局信息;采用可分离大核多尺度特征提取模块,处理网络多尺度特征;引入小目标的专用检测头,增强小目标的检测精度。实验结果表明,在参数量仅为基线模型60%的情况下,该模型的检测精度提高了2.4个百分点,平均精度(mAP)提高了2.04个百分点,模型检测效果优于其他经典模型,具备卓越的性能。 展开更多
关键词 多任务学习 目标检测 无人机图像 复杂天气 提示学习 去噪模型
在线阅读 下载PDF
融合多种注意力机制和Wise-IoUv3的水下目标检测算法 被引量:1
18
作者 肖振久 高凯歌 李士博 《广东海洋大学学报》 北大核心 2025年第2期109-117,共9页
【目的】针对水下目标图像存在成像模糊和复杂背景下检测精度低的问题,提出融合多种注意力机制和Wise-IoUv3的水下目标检测算法。【方法】首先,设计多尺度特征增强机制,在主干网络部分采用全维动态卷积(ODConv)替代部分卷积并引入高效... 【目的】针对水下目标图像存在成像模糊和复杂背景下检测精度低的问题,提出融合多种注意力机制和Wise-IoUv3的水下目标检测算法。【方法】首先,设计多尺度特征增强机制,在主干网络部分采用全维动态卷积(ODConv)替代部分卷积并引入高效的多尺度注意力机制(EMA),提升主干网络对模糊目标和小目标特征提取能力。其次,改进快速空间金字塔池化(SPPF)模块,增加平均池化分支补充空间信息,提升全局上下文感知能力并在两个分支融入轻量级BiFormer注意力机制,降低模型计算复杂度,增强对小目标检测性能。然后,在预测阶段,用Wise-IoUv3代替原损失函数,平衡不同质量图像模型训练结果。最后,用动态检测头(DynamicHead)替代原检测头,增强检测头的尺度感知、空间感知和任务感知能力,提高对象位置的识别准确性。【结果与结论】在RUOD和URPC数据集上实验结果表明,模型的检测精度、参数量和计算量较目前其他的主流模型表现良好,特别是与YOLOv8n算法相比,改进后算法在平均精度均值上提升3.6%和1.7%,尤其在包含大量小目标的类别(如海胆、扇贝)中表现更优;模型的参数量和计算量分别减少了0.26×10^(6)和0.4 GFLOPs。实验结果表明,该方法减少了在复杂情况下模糊目标和小目标漏检和误检情况,提高了检测性能,同时保持了模型的轻量性。 展开更多
关键词 水下目标检测 多尺度特征增强机制 多尺度注意力机制 全维动态卷积 Wise-IoUv3
在线阅读 下载PDF
基于多尺度特征融合SSDLite的光伏组件缺陷检测 被引量:1
19
作者 项新建 汤卉 +3 位作者 肖家乐 王世乾 张颖超 王磊 《太阳能学报》 北大核心 2025年第1期669-675,共7页
为了应对光伏组件缺陷检测中人工检测速度缓慢以及使用YOLO等深度学习模型时速度较慢且硬件成本高的问题,提出一种基于SSDLite的多层特征融合轻量化目标检测方法。该方法采用MobileNetV2作为SSDLite模型的骨干网络,并从中提取3个不同层... 为了应对光伏组件缺陷检测中人工检测速度缓慢以及使用YOLO等深度学习模型时速度较慢且硬件成本高的问题,提出一种基于SSDLite的多层特征融合轻量化目标检测方法。该方法采用MobileNetV2作为SSDLite模型的骨干网络,并从中提取3个不同层次的特征层进行特征融合。针对不同缺陷的尺寸特点,对模型中的先验框的大小也进行了重新设计。在MobileNetV2的瓶颈结构中引入CBAM注意力机制,以提高模型的检测精度。相比传统的SSDLite模型,该文模型平均精度从65.8%提高至72.4%,虽然速度略微下降,但已基本满足实际应用的需求。 展开更多
关键词 光伏组件 目标检测 深度学习 SSDLite 多层特征融合 MobileNetV2
在线阅读 下载PDF
基于改进YOLOv5的骑行者头盔佩戴检测方法
20
作者 胡青松 单露露 +2 位作者 刘许 李世银 孙彦景 《南京信息工程大学学报》 北大核心 2025年第4期494-505,共12页
未佩戴或未正确佩戴头盔将对骑行人员生命安全造成重大威胁,人工督查不但工作量大效率低下,而且难以做到全区域全时段覆盖.本文提出一种基于改进YOLOv5的骑行者头盔佩戴检测方法,通过监控摄像头对骑行人员的头盔佩戴情况进行智能检测和... 未佩戴或未正确佩戴头盔将对骑行人员生命安全造成重大威胁,人工督查不但工作量大效率低下,而且难以做到全区域全时段覆盖.本文提出一种基于改进YOLOv5的骑行者头盔佩戴检测方法,通过监控摄像头对骑行人员的头盔佩戴情况进行智能检测和自动识别.首先,构建了包括不同地点、不同视角、不同天气、不同时段的骑行者头盔佩戴数据集,为研究奠定基础.随后提出一种基于改进YOLOv5的头盔佩戴检测模型,通过改进YOLOv5的多尺度特征融合模块,提升小目标检测效果;引入ECA注意力机制,强化特征图融合效果,显著提升模型检测精度;基于GSConv对Neck部分进行轻量化处理,有效地降低模型的检测耗时.实验结果表明,本文算法对骑行者头盔佩戴情况具有良好的检测性能,mAP达到93.2%,相较YOLOX提升1.9个百分点,单张图片检测耗时15.23 ms,在保证较高检测速率的同时检测精度更高,具有一定的应用价值. 展开更多
关键词 头盔检测 小目标检测 多尺度特征 注意力机制 模型压缩
在线阅读 下载PDF
上一页 1 2 87 下一页 到第
使用帮助 返回顶部