期刊文献+
共找到24篇文章
< 1 2 >
每页显示 20 50 100
多尺度残差与全局注意力结合的低剂量CT去噪
1
作者 孙亚楠 陈平 潘晋孝 《应用光学》 北大核心 2025年第2期292-299,共8页
针对目前低剂量CT(low dose computed tomography,LDCT)图像去噪方法由于缺乏对空间特征和去噪任务之间的内在联系,导致重建图像的纹理细节丢失和过于平滑的问题,提出了一种结合多尺度密集残差和全局注意力的图像去噪网络。通过引入多... 针对目前低剂量CT(low dose computed tomography,LDCT)图像去噪方法由于缺乏对空间特征和去噪任务之间的内在联系,导致重建图像的纹理细节丢失和过于平滑的问题,提出了一种结合多尺度密集残差和全局注意力的图像去噪网络。通过引入多尺度密集残差块来提取图像的多尺度特征信息,并通过全局注意力机制(global attention mechanism,GAM)来关注模型不同通道间的跨维信息,同时加入跳跃连接进一步扩大全局交互特征的范围,最后使用多尺度特征损失函数增强图像纹理细节,避免图像过于平滑的问题。经过实验验证,本文所提出的算法在峰值信噪比(PSNR)和结构相似度(SSIM)这两项指标上分别达到了35.1838 dB、0.9605,在去除噪声的同时很好地保留了图像细节信息,优于其他算法。 展开更多
关键词 低剂量CT 图像去噪 多尺度密集残差 全局注意力机制
在线阅读 下载PDF
高低频特征融合的低照度图像增强方法
2
作者 王德文 胡旺盛 +1 位作者 张润磊 赵文清 《智能系统学报》 北大核心 2025年第3期641-648,共8页
针对现有低照度图像增强方法中性能与开销不平衡的问题,本文提出一种高低频特征融合的低照度图像增强方法。该方法在多尺度上提取几何特征丰富的低频特征与语义特征丰富的高频特征,经过高低频特征融合得到增强图像,在保证良好图像质量... 针对现有低照度图像增强方法中性能与开销不平衡的问题,本文提出一种高低频特征融合的低照度图像增强方法。该方法在多尺度上提取几何特征丰富的低频特征与语义特征丰富的高频特征,经过高低频特征融合得到增强图像,在保证良好图像质量的同时降低开销。为提升低照度环境下的特征提取能力,构建残差混合注意力模块,从像素与通道两方面对重要的局部区域给予更多关注。针对下采样导致的信息丢失问题,提出一种特征合并模块对下采样后的特征进行特征补充。此外,通过多级残差密集连接模块增强特征复用能力。在SID(see-in-the-dark)数据集上的实验表明,该方法峰值信噪比和结构相似度分别达到29.67和0.792,模型参数量仅为1.5×10^(6)。 展开更多
关键词 低照度 图像增强 高频特征 低频特征 特征融合 注意力 多尺度 残差网络 密集连接
在线阅读 下载PDF
基于残差双通道注意力U-Net的古代壁画病害检测
3
作者 赵辉荣 余映 +2 位作者 陈安 倪雪莹 王信超 《计算机辅助设计与图形学学报》 北大核心 2025年第6期1040-1052,共13页
针对现有的古代壁画病害检测方法难以准确地检测壁画病害区域的问题,提出一种基于残差双通道注意力U-Net的古代壁画病害检测模型.首先设计残差双通道模块代替U-Net中的编码器和解码器,构建具有多分辨率分析能力的网络检测复杂背景中不... 针对现有的古代壁画病害检测方法难以准确地检测壁画病害区域的问题,提出一种基于残差双通道注意力U-Net的古代壁画病害检测模型.首先设计残差双通道模块代替U-Net中的编码器和解码器,构建具有多分辨率分析能力的网络检测复杂背景中不同尺度的壁画病害区域;然后加入多尺度注意力门融合高层和低层的互补特征,使网络能突出壁画病害区域的显著特征;最后设计混合域注意力模块抑制壁画背景信息的干扰,进一步准确地定位壁画病害区域;此外,采用多阶段损失相加的方式提高网络模型的性能.实验结果表明,在敦煌莫高窟壁画数据集和云南少数民族壁画数据集上,所提模型的检测结果在视觉感受方面优于其他对比方法,在F-score指标上分别达到了0.807 7和0.728 9,均高于其他对比方法. 展开更多
关键词 古代壁画病害检测 U-Net 残差双通道 多尺度注意力门 混合域注意力
在线阅读 下载PDF
多尺度残差密集注意力网络图像超分辨率重建 被引量:3
4
作者 倪水平 王仕杰 +1 位作者 李慧芳 李朋坤 《河南理工大学学报(自然科学版)》 CAS 北大核心 2024年第1期140-148,共9页
目的使用单一尺度卷积网络提取低分辨率(low-resolution,LR)图像特征会造成大量图像高频特征丢失,为了获取更多高频特征,重建更清晰的超分辨率图像,方法提出一种基于多尺度残差密集注意力网络(multi-scale residual dense attention net... 目的使用单一尺度卷积网络提取低分辨率(low-resolution,LR)图像特征会造成大量图像高频特征丢失,为了获取更多高频特征,重建更清晰的超分辨率图像,方法提出一种基于多尺度残差密集注意力网络(multi-scale residual dense attention network)的单幅图像超分辨率重建算法。首先,使用卷积网络从低分辨率图像中提取浅层特征并将其作为后续网络各级输入;其次,采用各级多尺度残差密集注意力块(multi-scale residual dense attention block)处理前级网络图像特征并从中提取图像高频特征,多尺度残差密集网络善于提取更丰富的图像特征,并融入注意力机制,增强网络对高频区域特征的关注;然后,将网络各级提取不同深度的图像特征进行全局特征融合;最后,融合后的特征经上采样输出重建的超分辨率图像。结果放大因子为4时,网络在SET5,SET14,BSDS100,URBAN100和MANGA109数据集上测试,峰值信噪比分别为31.97,28.58,27.57,25.85,29.79 dB;网络中基本模块分别由多尺度残差密集注意力块、残差块和密集块替换提取特征,以峰值信噪比作为模块性能评估标准,多尺度残差密集注意力块表现更优异。结论该网络结合多尺度残差密集网络能够获取更丰富图像高低频信息,融入注意力机制有效对网络中高频信息进行提取,能重建纹理更清晰的超分辨率图像。 展开更多
关键词 多尺度残差 密集注意力网络 超分辨率重建 注意力机制 高频区域
在线阅读 下载PDF
基于多级残差信息蒸馏的真实图像去噪方法 被引量:3
5
作者 冯妍舟 刘建霞 +2 位作者 王海翼 冯国昊 白宇 《计算机工程》 CAS CSCD 北大核心 2024年第3期216-223,共8页
深度神经网络对真实图像有较强的去噪能力,可以学习含噪图像和干净图像之间复杂的非线性映射关系。然而,过多的卷积操作导致计算成本增加并占据大量内存,限制了去噪技术在低运算能力设备中的应用,现有去噪算法容易损坏细节信息,恢复图... 深度神经网络对真实图像有较强的去噪能力,可以学习含噪图像和干净图像之间复杂的非线性映射关系。然而,过多的卷积操作导致计算成本增加并占据大量内存,限制了去噪技术在低运算能力设备中的应用,现有去噪算法容易损坏细节信息,恢复图像存在边缘过度平滑、纹理缺失、含有残留噪声等问题。针对这些问题,构造一种多级残差信息蒸馏模块。通过对特征通道进行分割,保留部分特征用于后续多级融合,并进一步通过深度提取单元提取细化后的特征信息;引入对比度感知通道注意力机制对不同通道的特征分配权重;使用多级跳跃连接充分融合不同阶段提取到的上下文信息。构建1个轻量级的多级残差信息蒸馏网络,采用块间复杂度低的编码-解码结构,编码部分为含噪图像特征提取模块,解码部分为干净图像恢复模块。为了加快训练速度,采用混合图像尺寸的渐进式训练方法。实验结果表明,该方法在SSID和DND真实图像数据集上的峰值信噪比分别为39.43 dB和39.49 dB,与其他网络相比提升了0.17~15.77 dB和0.02~7.06 dB,而模型参数量仅为6.92×106,所提模型在提高去噪性能的同时具有较少的参数量。 展开更多
关键词 图像复原 真实图像去噪 多级残差信息蒸馏模块 深度提取模块 对比度感知通道注意力
在线阅读 下载PDF
融合局部和全局特征的息肉分割模型 被引量:1
6
作者 张攀峰 杨贺 +2 位作者 神显豪 程小辉 杜慧 《电子测量技术》 北大核心 2024年第16期100-109,共10页
针对现有模型在息肉分割中存在复杂区域分割困难、边缘细节信息丢失、泛化能力不足等问题,提出一种融合局部和全局特征的息肉分割模型。以卷积神经网络和Transformer作为并行编码器,使模型可以兼顾多种尺度的局部细节特征和全局语义特征... 针对现有模型在息肉分割中存在复杂区域分割困难、边缘细节信息丢失、泛化能力不足等问题,提出一种融合局部和全局特征的息肉分割模型。以卷积神经网络和Transformer作为并行编码器,使模型可以兼顾多种尺度的局部细节特征和全局语义特征;在跳跃连接处构建注意力增强模块和多尺度残差模块,前者强化模型对重要信息的关注度,后者高效探索目标区域并准确预测其边界,同时促进不同层次特征之间的交互;在解码阶段采用基于残差的逐步上采样特征融合方式汇聚各阶段特征,进一步增强模型的感知能力,丰富息肉特征;最后使用高效预测头促进浅层特征的融合,输出分割结果。该模型在多个对比实验中表现最优,同次优模型相比,在Kvasir、CVC-ClinicDB数据集上,mDice平均提升了1.21%;mIoU平均提升了1.82%;在CVC-ColonDB、ETIS数据集上,mDice平均提升了2.67%,mIoU平均提升了2.83%。实验结果表明,相比于现有主流模型,该模型具有较优的分割精度和泛化性能。 展开更多
关键词 息肉分割 TRANSFORMER 卷积神经网络 注意力增强模块 多尺度残差模块 特征融合
在线阅读 下载PDF
基于生成对抗网络的深海图像增强算法 被引量:1
7
作者 郭银辉 张春堂 樊春玲 《电子测量技术》 北大核心 2024年第12期173-181,共9页
在复杂的深海环境中提高图像的质量和可视化效果对水下科学研究和工程应用具有重要意义。针对深海特殊环境导致深海数据集稀缺,以及深海图像存在的色彩失真、对比度低等问题本文构建了一个成对的深海图像数据集DSIEB,并在此基础上提出... 在复杂的深海环境中提高图像的质量和可视化效果对水下科学研究和工程应用具有重要意义。针对深海特殊环境导致深海数据集稀缺,以及深海图像存在的色彩失真、对比度低等问题本文构建了一个成对的深海图像数据集DSIEB,并在此基础上提出了一种结合DC注意力和MSDR多尺度密集残差的生成对抗网络DM-GAN算法。首先,在网络跳跃连接部分构建DC双重通道注意力机制,用于加强通道间联系,提取图像细节纹理特征。其次,在生成器结构中嵌入MSDR多尺度密集残差块,提高对局部信息的关注和特征重用能力。最后,重构新的损失函数,引入平滑保真度SF损失,从多个角度引导网络学习原始图像到目标图像的映射。通过在自建数据集DSIEB上进行实验验证,并与7种先进水下图像增强算法进行对比实验,实验结果表明本文所提算法具有更强的泛化能力,适应于多样性的深海图像。 展开更多
关键词 深海图像增强 生成对抗网络 DC双重通道注意力机制 MSDR多尺度密集残差块 SF损失
在线阅读 下载PDF
基于增强型多尺度残差生成对抗网络的图像压缩 被引量:1
8
作者 马婷 刘友鑫 +2 位作者 胡峰 聂伟 吴建芳 《计算机工程与设计》 北大核心 2024年第8期2415-2422,共8页
为解决低码率下更符合人类视觉感知的图像压缩,提出一种基于增强型多尺度残差生成对抗网络的有损压缩方法。在网络框架的自动编码器中,使用一种结构上改进的增强型多尺度残差块,其可以扩大感受野,更容易获得图像的全局信息。引入简易注... 为解决低码率下更符合人类视觉感知的图像压缩,提出一种基于增强型多尺度残差生成对抗网络的有损压缩方法。在网络框架的自动编码器中,使用一种结构上改进的增强型多尺度残差块,其可以扩大感受野,更容易获得图像的全局信息。引入简易注意力模块,帮助网络更加关注图像复杂的部分,减少简单部分的比特。判别器部分采用全新的相对平均判别器,在网络框架中使用LPIPS(learned perceptual image patch similarity)感知损失减轻图像伪影问题。采用两阶段训练的方式解决引入生成对抗网络导致训练不稳定的问题。实验结果表明了在低码率下所提模型的有效性,与之前的工作相比,所提方法在感知失真指标上表现更优,性能提升了65%左右,重建图像更符合人类视觉感知。 展开更多
关键词 低码率 图像压缩 生成对抗网络 多尺度残差块 注意力模块 相对平均判别器 感知损失
在线阅读 下载PDF
基于增强网格网络的井下尘雾图像清晰化算法
9
作者 谷亚楠 李晴 +1 位作者 刘晨晨 张富凯 《工矿自动化》 CSCD 北大核心 2024年第10期120-127,159,共9页
针对目前井下尘雾图像清晰化算法存在的图像偏暗、细节丢失和过度增强等问题,提出一种基于增强网格网络的井下尘雾图像清晰化算法。该算法由前处理模块、主干模块和输出模块3个部分组成。前处理模块通过特征提取模块IRDB生成一组特征图... 针对目前井下尘雾图像清晰化算法存在的图像偏暗、细节丢失和过度增强等问题,提出一种基于增强网格网络的井下尘雾图像清晰化算法。该算法由前处理模块、主干模块和输出模块3个部分组成。前处理模块通过特征提取模块IRDB生成一组特征图,作为主干模块的输入,IRDB融合了Inception架构和密集残差连接模块(RDB)的优势,可在网络资源有限的情况下增加网络的深度和宽度,从而增强网络的表征能力、泛化能力及其对不同尺度尘雾的处理能力;主干模块采用网格网络进一步提取图像不同尺度的特征,并通过上采样和下采样实现特征图不同尺度的变换,为更好地捕捉图像中的细节信息,在网格网络中引入通道注意力机制。实验结果表明:IRDB数量为5时,网络模型的峰值信噪比(PSNR)、结构相似度指数(SSIM)和自然图像质量评价指标(NIQE)最好;从视觉效果上看,用所提算法清晰化处理后的图像细节信息更加丰富,色彩更加自然,具有良好的清晰度和对比度;在井下数据集上用所提算法处理后的图像PSNR、SSIM和NIQE分别为23.69,0.840 1,8.95,图像处理速度处于中等水平,整体性能优于DCP,AOD-Net等同类算法。 展开更多
关键词 井下尘雾图像 图像清晰化 基于网格网络 深度学习 多尺度特征提取 Inception架构 密集残差连接
在线阅读 下载PDF
多尺度循环注意力网络运动模糊图像复原方法 被引量:13
10
作者 王向军 欧阳文森 《红外与激光工程》 EI CSCD 北大核心 2022年第6期450-458,共9页
在图像采集过程中,由于拍摄对象运动或相机自身运动造成的图像模糊对于后续的高级视觉任务会产生很不利的影响。针对当前深度学习图像去模糊方法不能兼顾去模糊效果和效率的问题,提出了一种多尺度循环注意力网络,使用深度可分离卷积降... 在图像采集过程中,由于拍摄对象运动或相机自身运动造成的图像模糊对于后续的高级视觉任务会产生很不利的影响。针对当前深度学习图像去模糊方法不能兼顾去模糊效果和效率的问题,提出了一种多尺度循环注意力网络,使用深度可分离卷积降低参数量,改进注意力模块合理分配计算资源,对卷积层进行密集型连接提高参数利用效率,引入边缘损失提升生成图像边缘细节信息。经过实验验证,所提方法具有良好的泛化性能和鲁棒性,在Lai数据集和K?hler数据集上的SSIM和PSNR较近年典型方法的最佳效果分别提升了约1.15%、0.86%和0.91%、1.04%,在GoPro数据集上的平均单帧运行速度较同类方法提升约2.5倍。 展开更多
关键词 多尺度循环网络 注意力机制 密集型残差网络 边缘损失
在线阅读 下载PDF
基于多尺度残差双域注意力网络的乳腺动态对比度增强磁共振成像肿瘤分割方法 被引量:1
11
作者 刘侠 吕志伟 +2 位作者 李博 王波 王狄 《电子与信息学报》 EI CSCD 北大核心 2023年第5期1774-1785,共12页
针对乳腺肿瘤大小形态多变、边界模糊以及前景与背景间严重类不平衡的问题,该文提出一种多尺度残差双域注意力融合网络。该网络以多尺度卷积构成的多尺度残差块作为基本搭建模块,通过提取多尺度特征和优化梯度传播通道提高其识别不同尺... 针对乳腺肿瘤大小形态多变、边界模糊以及前景与背景间严重类不平衡的问题,该文提出一种多尺度残差双域注意力融合网络。该网络以多尺度卷积构成的多尺度残差块作为基本搭建模块,通过提取多尺度特征和优化梯度传播通道提高其识别不同尺寸目标的能力,同时融入双域注意力单元,提高网络的边缘识别和边界保持能力。另外该文提出一种混合自适应权重损失函数改善网络优化方向,缓解正负样本极度不均衡的影响。实验结果表明,该文所提方法的平均骰子相似系数(Dice)值达到0.8063,较U形网络(UNet)提高5.3%,参数量下降73.36%,具有更优的分割性能。 展开更多
关键词 乳腺肿瘤分割 多尺度残差块 双域注意力 混合自适应权重损失函数
在线阅读 下载PDF
残差卷积注意网络的图像超分辨率重建 被引量:4
12
作者 谌贵辉 陈伍 +3 位作者 李忠兵 易欣 刘会康 韩春阳 《计算机工程与应用》 CSCD 北大核心 2021年第12期193-200,共8页
针对极深神经网络图像超分辨率重建过程中,存在图像特征提取少、信息利用率低,平等处理高、低频信息通道的问题,提出了残差卷积注意网络的图像超分辨率重建算法。构造多尺度残差注意块,最大限度地提高网络提取到多尺寸特征信息,引入通... 针对极深神经网络图像超分辨率重建过程中,存在图像特征提取少、信息利用率低,平等处理高、低频信息通道的问题,提出了残差卷积注意网络的图像超分辨率重建算法。构造多尺度残差注意块,最大限度地提高网络提取到多尺寸特征信息,引入通道注意力机制,增强高频信息通道的表征能力。引入卷积注意块的特征提取结构,减少高频图像细节信息的丢失。在网络的重建层,引入全局跳远连接结构,进一步丰富重建的高分辨率图像信息的流动。实验结果表明,所提算法在Set5等基准数据集上的PSNR、SSIM比其他基于深度卷积神经网络的方法均明显提升,验证了提出方法的有效性与先进性。 展开更多
关键词 图像超分辨率重建 特征提取 多尺度残差注意块 卷积注意块
在线阅读 下载PDF
矿井图像超分辨率重建研究 被引量:2
13
作者 王媛彬 刘佳 +1 位作者 郭亚茹 吴冰超 《工矿自动化》 CSCD 北大核心 2023年第11期76-83,120,共9页
受井下粉尘大、照度低等环境影响,矿井图像存在分辨率低、细节模糊等问题,现有的图像超分辨率重建算法应用于矿井图像时,难以获取不同尺度图像信息、网络参数过大而影响重建速度,且重建图像易出现细节丢失、边缘轮廓模糊、伪影等问题。... 受井下粉尘大、照度低等环境影响,矿井图像存在分辨率低、细节模糊等问题,现有的图像超分辨率重建算法应用于矿井图像时,难以获取不同尺度图像信息、网络参数过大而影响重建速度,且重建图像易出现细节丢失、边缘轮廓模糊、伪影等问题。提出了一种基于多尺度密集通道注意力超分辨率生成对抗网络(SRGAN)的矿井图像超分辨率重建算法。设计了多尺度密集通道注意力残差块替代SRGAN原有的残差块,采用2路并行且卷积核大小不同的密集连接块,可充分获取图像特征;融入高效通道注意力模块,加强对高频信息的关注度;采用深度可分离卷积对网络进行轻量化,抑制网络参数的增加;利用纹理损失约束网络训练,避免网络加深时产生伪影。在井下数据集和公共数据集上对提出的矿井图像超分辨率重建算法和经典超分辨率重建算法BICUBIC,SRCNN,SRRESNET,SRGAN进行实验,结果表明:所提算法在主客观评价上总体优于对比算法,网络参数较SRGAN减少了2.54%,峰值信噪比与结构相似度较经典算法指标均值分别提高了0.764 dB和0.05358,能更好地关注图像的纹理、轮廓等细节信息,重建图像更符合人眼视觉。 展开更多
关键词 矿井图像 超分辨率重建 超分辨率生成对抗网络 多尺度密集通道注意力残差块 高效通道注意力模块 深度可分离卷积 纹理损失
在线阅读 下载PDF
多尺度残差注意力的高速铁路OFDM信道估计 被引量:3
14
作者 陈永 蒋丰源 詹芝贤 《电子科技大学学报》 EI CAS CSCD 北大核心 2023年第4期512-522,共11页
针对高速铁路正交频分复用(OFDM)通信系统在高速移动场景下,难以准确对快时变信道状态信息进行估计的问题,提出了一种基于多尺度残差注意力网络的高速铁路OFDM信道估计方法。首先,设计多尺度信道特征提取结构,对低分辨率信道矩阵采用多... 针对高速铁路正交频分复用(OFDM)通信系统在高速移动场景下,难以准确对快时变信道状态信息进行估计的问题,提出了一种基于多尺度残差注意力网络的高速铁路OFDM信道估计方法。首先,设计多尺度信道特征提取结构,对低分辨率信道矩阵采用多尺度多维特征提取,增强了信道不同尺度信息的提取能力。然后,构建残差注意力级联深度网络进行信道特征重构映射,将局部残差反馈结合注意力机制促进深层特征的融合和利用,提升OFDM信道矩阵的重构映射能力。最后,使用子像素卷积重构生成高分辨率信道矩阵,完成信道估计。通过频域和时域信道估计测试分析表明:在低速及高速铁路场景下,该方法与其他方法相比,信道估计的精度和复杂度等客观性评价指标均优于比较算法,能够满足OFDM信道估计的要求。 展开更多
关键词 信道估计 深度残差注意力 多尺度卷积神经网络 正交频分复用系统 超分辨率重构
在线阅读 下载PDF
基于卷积长短期记忆的残差注意力去雨网络 被引量:2
15
作者 强赞霞 鲍先富 《计算机应用》 CSCD 北大核心 2022年第9期2858-2864,共7页
无人驾驶汽车在雨天环境中行驶,由于车载相机采集的图片包含雨纹噪声,导致无人驾驶系统的目标检测精度降低,关键目标识别困难。为解决这些问题,提出了一种基于卷积长短期记忆的残差注意力去雨网络。首先提出卷积长短期记忆(CLSTM)单元... 无人驾驶汽车在雨天环境中行驶,由于车载相机采集的图片包含雨纹噪声,导致无人驾驶系统的目标检测精度降低,关键目标识别困难。为解决这些问题,提出了一种基于卷积长短期记忆的残差注意力去雨网络。首先提出卷积长短期记忆(CLSTM)单元对不同尺度的雨纹分布进行学习,然后使用残差通道注意力机制对雨纹进行提取,最后将雨图与雨纹提取信息相减得到修复后的背景图。为确定最优的网络结构,对各网络模块进行消融实验,然后选择去雨效果最优的结构作为去雨网络。通过对网络参数的不断优化,所提算法在数据集Rain100H、Rain100L、Real200上进行测试,结果显示该算法的峰值信噪比(PSNR)分别达到29.1 dB、33.1 dB、32.4 dB,结构相似性(SSIM)分别达到0.89、0.94和0.93。实验结果表明,通过生成对抗网络(GAN)判别器对雨纹去除效果的额外监督,所提算法取得了明显的雨纹去除效果,增强了无人驾驶系统在复杂降雨条件下的环境感知能力。 展开更多
关键词 去雨 生成对抗网络 卷积长短期记忆网络 残差通道注意力 多尺度特征融合
在线阅读 下载PDF
多尺度注意力交互式图像去噪网络
16
作者 罗军伟 张真 +2 位作者 雒芬 乔应旭 霍占强 《河南理工大学学报(自然科学版)》 CAS 北大核心 2023年第5期144-153,共10页
图像去噪中,针对去噪网络提取图像细节信息不全面和特征利用率低的问题,提出一种基于深度学习的多尺度注意力交互式图像去噪网络(MAINet)。首先,对于浅层像素级特征采用多尺度特征提取块获取丰富的上下文信息和图像纹理特征,以保证图像... 图像去噪中,针对去噪网络提取图像细节信息不全面和特征利用率低的问题,提出一种基于深度学习的多尺度注意力交互式图像去噪网络(MAINet)。首先,对于浅层像素级特征采用多尺度特征提取块获取丰富的上下文信息和图像纹理特征,以保证图像信息的完整性;然后,引入双路通道注意力机制指导网络获取更具判别性的特征信息,抑制不期望的噪声,从而进一步优化特征信息;最后,利用分类密集残差块的密集连接和成对卷积操作增强模型的交互性,对全局多层次特征进行联合学习,提取更高质量的语义级特征,以提升去噪网络的性能。实验结果表明,在定量和定性评估方面,所提出的去噪网络在合成噪声和真实噪声两种数据集上的去噪效果都有所提升。 展开更多
关键词 深度学习 图像去噪 多尺度特征提取 双路通道注意力机制 分类密集残差块
在线阅读 下载PDF
多注意力机制网络的调制识别算法
17
作者 王安义 王煜仪 《计算机工程与设计》 北大核心 2023年第2期328-334,共7页
针对小尺度衰落信道下调制信号识别率低的问题,提出一种基于多注意力机制网络的调制识别算法。提取信号瞬时幅度/相位特征与同相/正交序列构建双通道输入方式,实现多尺度感受野。通过残差密集块提取双通道数据的频域特征,将特征向量融... 针对小尺度衰落信道下调制信号识别率低的问题,提出一种基于多注意力机制网络的调制识别算法。提取信号瞬时幅度/相位特征与同相/正交序列构建双通道输入方式,实现多尺度感受野。通过残差密集块提取双通道数据的频域特征,将特征向量融合后送入双向门控循环单元提取时域信息,引入改进卷积注意力机制模块和软注意力机制捕捉信号的关键特征,构建多注意力机制网络对BPSK、QPSK、8PSK、16PSK、PAM4、GMSK、CPFSK、16QAM、64QAM这9种信号进行调制识别。仿真结果表明,信噪比大于10 dB时,9种信号平均识别率达89.2%以上,与其它深度学习算法相比具有更高的识别率,验证了该算法的有效性。 展开更多
关键词 调制识别 小尺度衰落信道 瞬时幅度/相位 双通道输入 残差密集块 双向门控循环单元 注意力机制
在线阅读 下载PDF
基于简单通道注意力机制的单图像超分辨率重建算法 被引量:2
18
作者 高艳鹍 刘一非 +2 位作者 李海生 彭凯康 刘朝晖 《计算机工程与设计》 北大核心 2023年第7期2140-2147,共8页
现有的单图像超分辨率重建算法一般存在重建图像过于失真或将低分辨率图像噪点放大的问题,针对上述两个问题,提出一种基于简单通道注意力机制的生成对抗网络(SCAGAN)模型。采用随机高阶退化模型缓解重建图像过于失真的问题;加入简单通... 现有的单图像超分辨率重建算法一般存在重建图像过于失真或将低分辨率图像噪点放大的问题,针对上述两个问题,提出一种基于简单通道注意力机制的生成对抗网络(SCAGAN)模型。采用随机高阶退化模型缓解重建图像过于失真的问题;加入简单通道注意力机制模块到残差密集块中作为模型的生成器网络模块,解决重建图像将低分辨率图像重建后噪点会放大的问题。实验数据表明,与现有的超分辨率算法相比,该算法有效降低了重建图像过于失真与将低分辨率图像噪点放大的问题,重建出的图像更加真实自然。 展开更多
关键词 超分辨率重建 通道注意力机制 退化模型 数据集构建 残差密集块 生成对抗模型 深度学习
在线阅读 下载PDF
深层跳线残差网络热红外图像超分辨重建 被引量:2
19
作者 邓伟 陈建飞 张胜 《电光与控制》 CSCD 北大核心 2023年第3期27-32,共6页
在公共安全、军事等领域高分辨率热红外图像能够提供更多的场景细节信息,有着广泛的应用需求,但高昂的设备成本限制了高分辨率红外图像的获取。为此设计了一种多级跳线深层残差卷积神经网络(DR-CNN),通过软件超分辨的方法重构出高分辨... 在公共安全、军事等领域高分辨率热红外图像能够提供更多的场景细节信息,有着广泛的应用需求,但高昂的设备成本限制了高分辨率红外图像的获取。为此设计了一种多级跳线深层残差卷积神经网络(DR-CNN),通过软件超分辨的方法重构出高分辨率的红外图像。采用多级跳线双通道注意力残差块增加卷积深度以解决卷积层间缺乏关联性的问题;使用Concat模块实现局部特征信息的融合,利用反卷积层进行特征图像的上采样,使其直接从低分辨率图像学习到高分辨率图像以降低训练的复杂度,加快运行速度。所提算法与SRCNN,FSRCNN和ADSR等算法进行对比测试,使用峰值信噪比(PSNR)和结构相似度(SSIM)作为算法的评价指标。实验结果表明提出的RD-CNN算法优于其他对比算法,生成的高分辨率图像细节丰富且清晰。 展开更多
关键词 热红外图像 超分辨重建 多级跳线 双通道 注意力残差块 Concat层
在线阅读 下载PDF
基于LSTM的递归网络图像去雨算法 被引量:2
20
作者 谷腾飞 赖惠成 +1 位作者 高古学 倪萍 《激光杂志》 CAS 北大核心 2022年第7期65-69,共5页
随着深度学习的发展的热潮,单幅图像去雨得到了很大的发展。然而由于雨图像在方向、大小和雨密度的雨纹的不同,使得去雨的工作变得更困难。针对以上问题,提出了一种基于LSTM的递归图像去雨算法,在特征提取方面采用卷积块和残差块相结合... 随着深度学习的发展的热潮,单幅图像去雨得到了很大的发展。然而由于雨图像在方向、大小和雨密度的雨纹的不同,使得去雨的工作变得更困难。针对以上问题,提出了一种基于LSTM的递归图像去雨算法,在特征提取方面采用卷积块和残差块相结合,并运用长短期记忆模块(LSTM)进行多层递归去雨,最后通过注意力融合模块进一步提取雨纹特征,对不同方向、大小等雨纹有较强的学习能力,较好地保留了图像的细节,通过在真实数据集和合成数据集上进行实验,证明了该方法的有效性,通过与其他算法的比较,在客观指标和主观效果上优于它们。主观效果去雨更彻底,图像细节更加清晰。在合成数据集Rain100H上PSNR达到30.48,SSIM为0.91,在Rain100L上PSNR达到38.05,SSIM为0.98。 展开更多
关键词 注意力融合(AF)模块 多层递归尺度卷积 长短期记忆 残差块
在线阅读 下载PDF
上一页 1 2 下一页 到第
使用帮助 返回顶部