期刊文献+
共找到527篇文章
< 1 2 27 >
每页显示 20 50 100
基于改进Multi-Scale AlexNet的番茄叶部病害图像识别 被引量:78
1
作者 郭小清 范涛杰 舒欣 《农业工程学报》 EI CAS CSCD 北大核心 2019年第13期162-169,共8页
番茄同种病害在不同发病阶段表征差异明显,不同病害又表现出一定的相似性,传统模式识别方法不能体现病害病理表征的动态变化,实用性较差。针对该问题,基于卷积神经网络提出一种适用于移动平台的多尺度识别模型,并基于此模型开发了面向... 番茄同种病害在不同发病阶段表征差异明显,不同病害又表现出一定的相似性,传统模式识别方法不能体现病害病理表征的动态变化,实用性较差。针对该问题,基于卷积神经网络提出一种适用于移动平台的多尺度识别模型,并基于此模型开发了面向农业生产人员的番茄叶部病害图像识别系统。该文详细描述了AlexNet的结构,分析其不足,结合番茄病害叶片图像特点,去除局部响应归一化层、修改全连接层、设置不同尺度卷积核提取特征,设计了基于AlexNet的多感受野识别模型,并基于Android实现了使用此模型的番茄叶部病害图像识别系统。Multi-ScaleAlexNet模型运行所耗内存为29.9MB,比原始AlexNet的内存需求652MB降低了95.4%,该模型对番茄叶部病害及每种病害早中晚期的平均识别准确率达到92.7%,基于此模型的Andriod端识别系统在田间的识别率达到89.2%,能够满足生产实践中移动平台下的病害图像识别需求。研究结果可为基于卷积神经网络的作物病害图像识别提供参考,为作物病害的自动化识别和工程化应用参考。 展开更多
关键词 图像处理 病害 图像识别 算法 卷积神经网络 番茄病害 多尺度
在线阅读 下载PDF
基于MSCNN-GRU神经网络补全测井曲线和可解释性的智能岩性识别 被引量:1
2
作者 王婷婷 王振豪 +2 位作者 赵万春 蔡萌 史晓东 《石油地球物理勘探》 北大核心 2025年第1期1-11,共11页
针对传统岩性识别方法在处理测井曲线缺失、准确性以及模型可解释性等方面的不足,提出了一种基于MSCNN-GRU神经网络补全测井曲线和Optuna超参数优化的XGBoost模型的可解释性的岩性识别方法。首先,针对测井曲线在特定层段丢失或失真的问... 针对传统岩性识别方法在处理测井曲线缺失、准确性以及模型可解释性等方面的不足,提出了一种基于MSCNN-GRU神经网络补全测井曲线和Optuna超参数优化的XGBoost模型的可解释性的岩性识别方法。首先,针对测井曲线在特定层段丢失或失真的问题,引入了基于多尺度卷积神经网络(MSCNN)与门控循环单元(GRU)神经网络相结合的曲线重构方法,为后续的岩性识别提供了准确的数据基础;其次,利用小波包自适应阈值方法对数据进行去噪和归一化处理,以减少噪声对岩性识别的影响;然后,采用Optuna框架确定XGBoost算法的超参数,建立了高效的岩性识别模型;最后,利用SHAP可解释性方法对XGBoost模型进行归因分析,揭示了不同特征对于岩性识别的贡献度,提升了模型的可解释性。结果表明,Optuna-XGBoost模型综合岩性识别准确率为79.91%,分别高于支持向量机(SVM)、朴素贝叶斯、随机森林三种神经网络模型24.89%、12.45%、6.33%。基于Optuna-XGBoost模型的SHAP可解释性的岩性识别方法具有更高的准确性和可解释性,能够更好地满足实际生产需要。 展开更多
关键词 岩性识别 多尺度卷积神经网络 门控循环单元神经网络 XGBoost 超参数优化 可解释性
在线阅读 下载PDF
多尺度密集交互注意力残差真实图像去噪网络 被引量:1
3
作者 郭业才 胡晓伟 +1 位作者 AMITAVE Saha 毛湘南 《图学学报》 北大核心 2025年第2期279-287,共9页
针对图像去噪特征提取不全面以及特征利用率低,导致生成图像不够清晰的问题,提出一种多尺度密集交互注意力残差去噪网络(MDIARN)。首先,通过多尺度非对称特征提取模块(MAFM)初步提取浅层信息特征,以确保图像特征的多样性;然后,多尺度级... 针对图像去噪特征提取不全面以及特征利用率低,导致生成图像不够清晰的问题,提出一种多尺度密集交互注意力残差去噪网络(MDIARN)。首先,通过多尺度非对称特征提取模块(MAFM)初步提取浅层信息特征,以确保图像特征的多样性;然后,多尺度级联模块(MSCM)利用多维密集交互残差单元(MDIU)对图像特征进行多维映射,并逐步级联以增强模型之间的信息传递和交互性,充分拟合训练数据;引入双路全局注意力模块(DGAM)对多级特征进行全局联合学习,获取更具有判别性的特征信息;跳跃连接促进结构之间的参数共享,使不同维度的特征充分融合,保证信息的完整性;最后,采用残差学习构建出清晰的去噪图像。结果表明,该算法在真实噪声数据集(DND和SIDD)上峰值信噪比分别为39.80 dB和39.62 dB,结构相似性分别为95.4%和95.8%,均优于主流去噪算法。此外,该算法在低光度场景下应用也能保留更多细节,从而显著提升图像质量。 展开更多
关键词 图像去噪 多尺度特征提取 多维密集交互 卷积神经网络 注意力
在线阅读 下载PDF
融合时空注意力机制的多尺度卷积车辆轨迹预测 被引量:1
4
作者 闫建红 刘芝妍 王震 《计算机工程》 北大核心 2025年第8期406-414,共9页
车辆轨迹预测是自动驾驶的重要环节,提升车辆轨迹预测的可靠性和准确性对自动驾驶安全性有很大帮助。道路上车辆行驶受交通环境影响,考虑相邻车辆运动和相对空间位置等交通环境因素,在长短期记忆(LSTM)神经网络编码器-解码器模型基础上... 车辆轨迹预测是自动驾驶的重要环节,提升车辆轨迹预测的可靠性和准确性对自动驾驶安全性有很大帮助。道路上车辆行驶受交通环境影响,考虑相邻车辆运动和相对空间位置等交通环境因素,在长短期记忆(LSTM)神经网络编码器-解码器模型基础上引入时空注意力机制,通过时间注意力层关注目标车辆和相邻车辆的历史轨迹,空间注意力层关注车辆的相对空间位置。为了增强特征提取程度和实现更全面的特征融合,使用多尺度卷积社交池增大感受野,融合多尺度特征,并提出基于LSTM编码器-解码器架构融合多尺度卷积社交池和时空注意力机制的车辆轨迹预测模型MCS-STA-LSTM。通过学习车辆运动相互依赖关系,以达到获得目标车辆未来轨迹基于机动类别的多模态预测分布的目的。在公开数据集NGSIM上进行训练、验证和测试,实验结果表明,相较于其他轨迹预测模型,该方法在3 s内的均方根误差平均降低了9.35%,5 s内均方根误差平均降低了5.53%,提高了轨迹预测准确性,在中短期预测上更具有优势。 展开更多
关键词 多尺度卷积社交池化 轨迹预测 长短期记忆神经网络 时空注意力机制 多尺度特征融合
在线阅读 下载PDF
基于多尺度通道注意力卷积神经网络的轴向柱塞泵故障诊断研究
5
作者 刘增光 张帅迪 +3 位作者 周焱 魏列江 岳大灵 冯珂 《机床与液压》 北大核心 2025年第14期124-130,共7页
针对传统多尺度卷积神经网络对不同尺度的特征只是简单拼接而未考虑特征差异的问题,提出一种基于多尺度通道注意力卷积神经网络(MSCA-CNN)的轴向柱塞泵故障诊断方法。在轴向柱塞泵实验平台上设置5种典型故障(配流盘磨损、斜盘磨损、滑... 针对传统多尺度卷积神经网络对不同尺度的特征只是简单拼接而未考虑特征差异的问题,提出一种基于多尺度通道注意力卷积神经网络(MSCA-CNN)的轴向柱塞泵故障诊断方法。在轴向柱塞泵实验平台上设置5种典型故障(配流盘磨损、斜盘磨损、滑靴磨损、松靴故障、中心弹簧失效),采集6种工作状态(正常状态及5种典型故障)下的z轴振动信号。以小波变换为信号预处理模块,将加速度传感器采集的一维振动信号转化为时频图并作为诊断模型的输入信号,采用不同尺度的卷积核对时频图进行特征提取。通过通道注意力为每个通道赋予不同的权重值,使模型能够集中学习与通道密切相关的特征信息,从而提高轴向柱塞泵的故障分类能力和诊断的效率。搭建轴向柱塞泵故障诊断实验平台,验证所提方法的有效性。结果表明:该模型对6种工作状态的诊断准确率达到99.65%,相比传统多尺度卷积神经网络模型提高了3.16%,验证了MSCA-CNN模型在轴向柱塞泵故障诊断中的优越性。 展开更多
关键词 故障诊断 卷积神经网络 通道注意力 多尺度特征 柱塞泵
在线阅读 下载PDF
基于WAAP-YOLO的玉米伴生杂草检测模型
6
作者 孟志永 贾雅微 +4 位作者 张秀清 倪永婧 张明 武琪 吴晨曦 《河北科技大学学报》 北大核心 2025年第4期386-394,共9页
为解决玉米伴生杂草存在样本形态各异、密集遮挡、背景复杂、尺度不一等问题,提出了目标检测模型WAAP-YOLO。首先,改进主干部分,将部分卷积替换为小波池化卷积,有效避免了混叠伪影现象;其次,引入聚合注意力机制构建C2f-AA模块,提升了模... 为解决玉米伴生杂草存在样本形态各异、密集遮挡、背景复杂、尺度不一等问题,提出了目标检测模型WAAP-YOLO。首先,改进主干部分,将部分卷积替换为小波池化卷积,有效避免了混叠伪影现象;其次,引入聚合注意力机制构建C2f-AA模块,提升了模型在复杂背景下对杂草特征的提取能力;最后,以ASF-P2-Net替换原始neck网络,通过尺度序列融合模块引入P2检测头,降低模型复杂度,显著提升小目标检测效果。结果表明,WAAP-YOLO检测算法的mAP@0.5指标、mAP@0.5∶0.95指标、F1、参数量分别为97.2%、85.8%、94.0%、2.1×10^(6),优于YOLOv5s、YOLOv8n、YOLOv10n等常见目标检测模型。所提模型可显著提升玉米田间杂草的精准识别能力,可为促进种植业的智能化和可持续发展提供参考。 展开更多
关键词 计算机神经网络 杂草识别 小波池化 注意力机制 多尺度融合
在线阅读 下载PDF
基于扩展局部二值模式的多尺度人脸表情识别方法
7
作者 胡黄水 戚星烁 +1 位作者 王出航 王玲 《吉林大学学报(理学版)》 北大核心 2025年第5期1427-1436,共10页
针对人脸表情识别在复杂环境下姿态和光照鲁棒性差的问题,提出一种融合扩展局部二值模式和多尺度网络结构的人脸表情识别方法.该方法通过扩展传统局部二值模式的感受野并增强像素间的空间联系,减少光照对人脸表情识别的噪声干扰;通过将... 针对人脸表情识别在复杂环境下姿态和光照鲁棒性差的问题,提出一种融合扩展局部二值模式和多尺度网络结构的人脸表情识别方法.该方法通过扩展传统局部二值模式的感受野并增强像素间的空间联系,减少光照对人脸表情识别的噪声干扰;通过将特征图在通道维度均匀分为若干子集并利用不同数量相同卷积块的方式提取特征图的多尺度特征,有效处理人脸姿态变化.在数据集Fer2013和RAF-DB上的实验结果表明,该方法可有效提高人脸表情识别的准确率和鲁棒性,为复杂环境下的人脸表情识别提供了有效解决方案. 展开更多
关键词 人脸表情识别 局部二值模式 多尺度网络 卷积神经网络
在线阅读 下载PDF
基于多尺度注意力的冠脉造影图像血管增强CNN模型
8
作者 周鹏 汪光普 +3 位作者 高慧 秦泽伟 王硕 余辉 《中国生物医学工程学报》 北大核心 2025年第1期43-51,共9页
冠状动脉造影记录着血管随血液流动显影的动态过程。受心脏运动干扰,可能导致显影图像质量差,严重影响医生的诊断,同时不利于冠心病智能辅助诊断。本研究提出了一种基于卷积神经网络(CNN)的多尺度注意力冠脉造影图像血管增强网络。它由... 冠状动脉造影记录着血管随血液流动显影的动态过程。受心脏运动干扰,可能导致显影图像质量差,严重影响医生的诊断,同时不利于冠心病智能辅助诊断。本研究提出了一种基于卷积神经网络(CNN)的多尺度注意力冠脉造影图像血管增强网络。它由多尺度注意力模块(MAB)和尾部大核注意力模块(LKAT)组成。MAB由多尺度大核注意力块(MLKA)和门控空间注意力块(GSAB)两部分组成,模块不仅能够提取更多局部和全局的血管信息,而且也避免了栅格效应。LKAT具有聚合长范围信息的能力,提高了重构血管特征的表征能力,从而提升冠脉造影图像的重建质量。实验中2 666张冠脉数据集由医学专家人工标注,得到的血管分割标签作为掩膜,叠加到经高斯滤波预处理后的图像上作为冠脉增强标签。与现有的先进方法比较,本研究方法能够完整的重建冠脉造影图像,峰值信噪比(PSNR)和结构相似性(SSIM)分别达到了34.880 1和0.973 2。并且增强后的分割结果,Dice和IoU分别达到了0.851 4和0.741 3,Acc和Recall分别达到了98.55%和89.05%。所提出的方法有效实现了冠脉血管造影图像的智能增强,同时也有利于冠心病智能辅助诊断的后续处理。 展开更多
关键词 冠脉血管增强 卷积神经网络 多尺度注意力 冠状动脉造影
在线阅读 下载PDF
基于MS1DCNN-BOA-SVM的智能液压系统故障诊断方法
9
作者 闫锋 肖成军 +2 位作者 孙一伟 孙有朝 谭忠睿 《机床与液压》 北大核心 2025年第8期174-181,共8页
针对液压系统故障特征提取困难、诊断准确率低等问题,提出一种基于多尺度一维卷积神经网络(MS1DCNN)和贝叶斯搜索优化支持向量机(SVM)的智能故障诊断模型。将多个传感器信号合并为单一输入信号;通过多尺度卷积处理提取关键故障特征,构... 针对液压系统故障特征提取困难、诊断准确率低等问题,提出一种基于多尺度一维卷积神经网络(MS1DCNN)和贝叶斯搜索优化支持向量机(SVM)的智能故障诊断模型。将多个传感器信号合并为单一输入信号;通过多尺度卷积处理提取关键故障特征,构建特征向量;然后,利用贝叶斯搜索优化SVM进行分类识别,构建故障诊断模型;最后,对模型进行训练。结果表明:该模型对柱塞泵和蓄能器的故障诊断准确率分别为99.63%、99.17%;与MS1DCNN、1DCNN、SVM模型相比,该模型在液压系统故障诊断方面具有高准确率、高可靠性和强泛化能力的优势。 展开更多
关键词 液压系统 多尺度卷积神经网络 支持向量机 贝叶斯搜索优化 故障诊断
在线阅读 下载PDF
基于单目RGB图像的三维手部姿态估计方法
10
作者 杨冰 徐楚阳 +1 位作者 姚金良 向学勤 《浙江大学学报(工学版)》 北大核心 2025年第1期18-26,共9页
现有的三维手部姿态估计方法大多基于Transformer技术,未充分利用高分辨率下的局部空间信息,为此提出基于改进FastMETRO的三维手部姿态估计方法.引入可变形注意力机制,使得编码器的设计不再受限于图像特征序列长度;引入交错更新多尺度... 现有的三维手部姿态估计方法大多基于Transformer技术,未充分利用高分辨率下的局部空间信息,为此提出基于改进FastMETRO的三维手部姿态估计方法.引入可变形注意力机制,使得编码器的设计不再受限于图像特征序列长度;引入交错更新多尺度特征编码器来融合多尺度特征,强化生成手部姿态;引入图卷积残差模块来挖掘网格顶点间的显式语义联系.为了验证所提方法的有效性,在数据集FreiHAND、HO3D V2和HO3D V3上开展训练及评估实验.结果表明,所提方法的回归精度优于现有先进方法,在FreiHAND、HO3D V2、HO3D V3上的普鲁克对齐-平均关节点误差分别为5.8、10.0、10.5 mm. 展开更多
关键词 三维手部姿态估计 TRANSFORMER 可变形注意力机制 交错更新多尺度特征编码器 神经网络
在线阅读 下载PDF
考虑空间相关性的MSCNN LSTM Attention能见度预测模型
11
作者 王小建 苏彤 +6 位作者 马飞 林智婕 白元旦 郭庆元 魏俊涛 黄凯 徐玉凤 《安全与环境学报》 北大核心 2025年第4期1622-1632,共11页
准确预测能见度对保障交通运输安全具有重要意义。针对现有方法在能见度预测时对影响因素空间相关性考虑不足导致预测精度较低的问题,研究构建了一种考虑空间相关性的能见度预测模型。利用一维多尺度卷积神经网络(Multi-Scale Convoluti... 准确预测能见度对保障交通运输安全具有重要意义。针对现有方法在能见度预测时对影响因素空间相关性考虑不足导致预测精度较低的问题,研究构建了一种考虑空间相关性的能见度预测模型。利用一维多尺度卷积神经网络(Multi-Scale Convolutional Neural Network, MSCNN)提取能见度以预测各影响因素下不同精细度的空间特征,并将其进行线性融合得到多因素空间特征,实现对能见度预测影响因素的空间特征提取;利用Attention机制加强对关键信息关注的优势以对长短期记忆神经网络(Long-Short Term Memory Neural Network, LSTM)方法进行改进,进而增强模型对重要时序信息关注的能力和模型预测的准确性,实现在考虑影响因素空间相关性下对能见度的预测。以2021—2023年西安市逐时气象数据和污染物数据为试验数据,采用均方根误差(RMSE)、平均绝对误差(MAE)和R2指标对模型进行评价。试验结果显示,研究模型MAE下降26.3%~39.1%,RMSE下降25%~40%,R2提升3.7%~16.4%,能见度预测精度较高。 展开更多
关键词 环境科学技术基础学科 能见度预测 空间相关性 一维多尺度卷积神经网络 长短期记忆神经网络 注意力机制
在线阅读 下载PDF
基于IPOA-MSCNN-BiLSTM-Attention模型的刀具磨损状态识别
12
作者 杨焕峥 崔业梅 +1 位作者 薛洪惠 徐玲 《组合机床与自动化加工技术》 北大核心 2025年第7期158-163,共6页
刀具状态监测直接影响产品加工质量,为了提高刀具磨损状态识别的准确性,构建了IPOA-MSCNN-BiLSTM-Attention模型。首先,采用多尺度卷积神经网络(MSCNN)和双向长短时记忆网络(BiLSTM)来学习数据的时空特征;其次,引入注意力机制(Attention... 刀具状态监测直接影响产品加工质量,为了提高刀具磨损状态识别的准确性,构建了IPOA-MSCNN-BiLSTM-Attention模型。首先,采用多尺度卷积神经网络(MSCNN)和双向长短时记忆网络(BiLSTM)来学习数据的时空特征;其次,引入注意力机制(Attention)以增强对关键信息的关注度;再次,提出了一种改进的鹈鹕优化算法(IPOA),用于优化模型多尺度卷积神经网络的参数。该算法结合自适应惯性权重因子、柯西变异和麻雀警戒机制策略,在CEC2005至CEC2022的众多函数性能测试中综合表现优于传统POA等5种算法;最后,在工业控制计算机(IPC)上运行了模型。结果表明,该模型在刀具磨损状态识别方面表现出较高的识别精度,可提高加工安全与生产效率。 展开更多
关键词 刀具磨损 状态监测 改进的鹈鹕优化算法 多尺度卷积神经网络 双向长短时记忆网络
在线阅读 下载PDF
基于多尺度特征与混合注意力的固井第二界面胶结质量智能评价方法
13
作者 方春飞 张鑫远 +3 位作者 王正 宋先知 祝兆鹏 于佳伟 《石油钻探技术》 北大核心 2025年第5期57-66,共10页
目前,固井第二界面(水泥环−地层界面)胶结质量评价主要依赖人工对变密度测井(VDL)图像进行解释,过程耗时、主观性强且一致性不足。为提高固井第二界面胶结质量评价的准确性和效率,建立了一种包含多尺度特征提取模块和混合通道-空间注意... 目前,固井第二界面(水泥环−地层界面)胶结质量评价主要依赖人工对变密度测井(VDL)图像进行解释,过程耗时、主观性强且一致性不足。为提高固井第二界面胶结质量评价的准确性和效率,建立了一种包含多尺度特征提取模块和混合通道-空间注意力机制模块的卷积神经网络模型(MSF−HCSA Net),实现利用VDL图像自动评价固井第二界面胶结质量。该模型基于顺北油气田3口井的数据,进行了训练和验证,固井第二界面胶结质量的评价准确率达到了95.8%。在样本不均衡且“胶结质量差”小样本占比偏低的情形下,通用大卷积模型SLaK对该类样本的识别存在不足;相比之下,MSF−HCSA Net借助通道−空间混合注意力与多尺度特征融合,将小样本“胶结质量差”类别的识别准确率提升了10%,在一定程度上缓解了类间不平衡带来的性能退化。研究结果表明,建立的MSF−HCSA Net能够实现固井第二界面胶结质量的快速、客观与高效自动评价,为现场固井质量监测与后续优化提供了可靠的技术支持。 展开更多
关键词 固井质量评价 变密度测井 深度学习 卷积神经网络 多尺度特征 混合注意力
在线阅读 下载PDF
基于深度学习的癫痫异常信号检测和分类模型
14
作者 王剑 成婷 +1 位作者 宋政阳 张一丁 《电子测量技术》 北大核心 2025年第17期113-124,共12页
癫痫是一种常见的神经系统疾病,其诊断主要依赖于脑电信号的分析。近年来,基于深度学习的方法在癫痫检测中得到了广泛应用,但这些方法通常依赖于单一的特征提取技术,且大多忽略了EEG信号的空间域特征。为了捕捉EEG信号的空域特征,研究... 癫痫是一种常见的神经系统疾病,其诊断主要依赖于脑电信号的分析。近年来,基于深度学习的方法在癫痫检测中得到了广泛应用,但这些方法通常依赖于单一的特征提取技术,且大多忽略了EEG信号的空间域特征。为了捕捉EEG信号的空域特征,研究人员尝试引入EEG的图表示,并结合图神经网络模型进行建模。然而,现有方法的图表示通常需要每个顶点遍历所有其他顶点来构建图结构,导致较高的时间复杂度,难以满足临床实时诊断的需求。针对上述挑战,首先提出了核心邻域图结构,在此基础上,进一步提出了基于双视图输入的癫痫自动检测和分类框架——DV-SeizureNet。该框架能够同时学习EEG信号的时域、频域和空域特征,实现癫痫异常检测和发作分类。在TUSZ数据集上的实验表明,DV-SeizureNet在癫痫检测任务中达到91.4%的准确率,优于现有最先进方法2.1%。在分类任务中,模型对4种癫痫发作类型的平均分类准确率为82.8%,F1-score为81.2%。DV-SeizureNet通过双视图学习框架,全面提取并融合EEG信号的时空频域特征,在癫痫异常检测和发作分类任务中表现优越,为临床诊断提供了可靠的辅助工具。 展开更多
关键词 癫痫检测 深度学习 EEG信号 双视图学习 图卷积神经网络 多尺度特征融合
在线阅读 下载PDF
基于MSCNN-BiGRU-Attention的短期电力负荷预测
15
作者 李科 潘庭龙 许德智 《中国电力》 北大核心 2025年第6期10-18,共9页
为解决电力负荷关键特征难以提取的问题,提出一种结合多尺度卷积神经网络-双向门控循环单元-注意力机制(multi-scale convolutional neural network-bi-directional gated recurrent unit-Attention,MSCNN-BiGRU-Attention)的组合模型... 为解决电力负荷关键特征难以提取的问题,提出一种结合多尺度卷积神经网络-双向门控循环单元-注意力机制(multi-scale convolutional neural network-bi-directional gated recurrent unit-Attention,MSCNN-BiGRU-Attention)的组合模型进行短期电力负荷预测。首先,通过Spearman相关系数分析电力负荷数据集的相关性,筛选出相关性较高的特征,构建电力负荷数据集;其次,将数据输入到多尺度卷积神经网络(multi-scale convolutional neural network,MSCNN),对电力负荷数据进行多尺度的时序提取;然后,将提取后的时序特征输入到双向门控循环单元(bi-directional gated recurrent unit,BiGRU)神经网络进行时序预测,并通过注意力(Attention)机制对时序特征进行过滤和筛选;最后,通过全连接层整合输出预测值。以澳大利亚某地区3年的多维电力负荷数据作为数据集,并设置5种对照组模型。同时选用国内南方某地区2年的多维电力负荷数据作为模型验证数据集。结果表明,相较其他模型,MSCNN-BiGRU-Attention组合模型能够取得更好的预测效果,有效解决区域级电力负荷关键特征难以提取的问题。 展开更多
关键词 电力负荷预测 多尺度卷积神经网络 双向门控循环单元 注意力机制 深度学习 Spearman相关系数
在线阅读 下载PDF
一种融合Transformer的多尺度结构图像去模糊方法
16
作者 郭业才 阳刚 毛湘南 《电光与控制》 北大核心 2025年第3期62-68,共7页
针对现有图像去模糊模型对于全局特征信息学习的不足以及感受野受限的问题,提出一种改进的融合Transformer的多尺度结构图像去模糊方法。首先,为了提高模型对全局特征学习以及远程像素捕获的能力,设计了一个多特征多尺度融合模块,该模... 针对现有图像去模糊模型对于全局特征信息学习的不足以及感受野受限的问题,提出一种改进的融合Transformer的多尺度结构图像去模糊方法。首先,为了提高模型对全局特征学习以及远程像素捕获的能力,设计了一个多特征多尺度融合模块,该模块利用双旁路结构将局部特征信息和全局特征信息有效地结合起来,同时简化Transformer以提升计算效率;其次,为了缓解卷积操作缺乏输入内容自适应的缺点,将通道注意力引入到特征融合模块中来动态地学习有用信息;最后,在基准数据集GoPro上,所提方法取得的峰值信噪比为31.87 dB,结构相似度为0.952。实验结果表明,所提方法与主流方法相比能够有效地复原图像细节特征,并且能够提升后续计算机视觉任务的鲁棒性。 展开更多
关键词 图像去模糊 多尺度结构 TRANSFORMER 卷积神经网络 注意力机制
在线阅读 下载PDF
基于注意力机制的双卷积图像去噪网络
17
作者 周先春 吕梦楠 +3 位作者 芮旸 唐彬鑫 杜志亭 陈玉泽 《电子测量与仪器学报》 北大核心 2025年第2期60-71,共12页
近年来,深度卷积神经网络在图像去噪领域表现出了优越的性能。然而,深度网络结构往往伴随着大量的模型参数,导致训练成本高,推理时间长,限制了其在实际去噪任务中的应用。提出了一种新的基于注意力机制的双卷积图像去噪网络(MA-DFRNet)... 近年来,深度卷积神经网络在图像去噪领域表现出了优越的性能。然而,深度网络结构往往伴随着大量的模型参数,导致训练成本高,推理时间长,限制了其在实际去噪任务中的应用。提出了一种新的基于注意力机制的双卷积图像去噪网络(MA-DFRNet),它由多尺度特征特征提取网络、双卷积神经网络及动态特征精炼注意力机制组成。多尺度特征提取网络通过不同尺度的卷积获取图像特征,提高灵活性。双卷积神经网络上下分支均采用跳跃连接及扩张卷积来增大感受野。动态特征精炼注意力机制增强特征表示的精度和区分能力。这种结构设计不仅扩大了感受野,还更有效地提取和融合图像特征,显著提升去噪效果。研究结果表明,与最先进的模型相比,提出的MA-DFRNet在所有对比的噪声水平下具有更高的峰值信噪比(PSNR)和结构相似性(SSIM)值,PSNR提高了0.2 dB左右,SSIM提高了1%左右,对于噪声水平较高的图像更具鲁棒性,并且在视觉上更好地保留了图像细节,实现去噪和细节保留之间的平衡。 展开更多
关键词 图像去噪 卷积神经网络 注意力机制 跳跃连接 多尺度特征提取网络
在线阅读 下载PDF
基于注意力机制和多尺度融合的人群计数网络
18
作者 栾方军 龚琪 袁帅 《计算机工程》 北大核心 2025年第3期352-361,共10页
为了应对人群图像中尺度变化和背景干扰的问题,提出一种人群计数网络模型,旨在充分利用多尺度信息并降低背景噪声的影响。首先采用ConvNeXt作为主干网络,用于提取特征。其次为了有效融合不同层次的特征,提出多层次特征融合模块(MFFM),... 为了应对人群图像中尺度变化和背景干扰的问题,提出一种人群计数网络模型,旨在充分利用多尺度信息并降低背景噪声的影响。首先采用ConvNeXt作为主干网络,用于提取特征。其次为了有效融合不同层次的特征,提出多层次特征融合模块(MFFM),将主干网络中不同层次的特征进行跨尺度融合,融合后的特征包含了不同尺度的语义信息,可以更好地适应人群计数任务中的尺度变化问题。接着为了更好地解决人群计数中存在的挑战,设计一个多尺度注意力模块(MSAM),根据不同感受野的分支提取不同尺度的特征,利用选择性Kernel通道注意力(SKCA)缓解多列结构存在的特征相似问题,并将模块生成的注意力图反馈到对应的尺度特征中,以抑制背景的干扰。网络模型在ShanghaiTechA数据集中的平均绝对误差(MAE)和均方根误差(RMSE)分别达到了56.1和93.9;在ShanghaiTechB数据集中的MAE和RMSE分别达到了6.1和10.3;在UCF_CC_50数据集中的MAE和RMSE分别达到了174.9和252.7;在Mall数据集中的MAE和RMSE分别达到了1.42和1.85。在公开数据集上的实验结果表明,提出的网络模型与现有代表性的人群计数方法相比,在提升人群计数任务的准确性和鲁棒性方面均取得了明显进展。 展开更多
关键词 人群计数 多尺度特征融合 注意力机制 神经网络 密度图
在线阅读 下载PDF
基于级联的多尺度特征融合残差去噪网络
19
作者 郭业才 胡晓伟 毛湘南 《计算机科学》 北大核心 2025年第6期239-246,共8页
针对图像去噪特征提取单一化以及特征利用率低,不能生成更清晰图像的问题,提出了级联多尺度特征融合残差真实图像去噪网络。该网络双分支自适应密集残差块采用双路非对称扩张卷积扩展图像感受野,在水平尺度上选择性地提取丰富的纹理特... 针对图像去噪特征提取单一化以及特征利用率低,不能生成更清晰图像的问题,提出了级联多尺度特征融合残差真实图像去噪网络。该网络双分支自适应密集残差块采用双路非对称扩张卷积扩展图像感受野,在水平尺度上选择性地提取丰富的纹理特征。在多尺度空间U-Net模块中,利用多尺度空间融合块增强网络对图像整体结构的学习能力,学习不同层次的信息,获取基于图像空间和上下文信息的多级特征。跳跃连接促进结构之间的参数共享,使不同尺度的特征充分融合,保证信息的完整性。最后,采用双残差学习构建出清晰的去噪图像。结果表明,该算法在真实噪声数据集(DND和SIDD)上的峰值信噪比分别为39.68 dB和39.50 dB,结构相似性分别为0.953和0.957,优于主流去噪算法。所提算法在增强去噪性能的同时,也保留了更详细的信息,使图像质量进一步提升。 展开更多
关键词 图像去噪 真实噪声 卷积神经网络 多尺度特征融合 密集残差
在线阅读 下载PDF
基于多尺度融合神经网络的同频同调制单通道盲源分离算法
20
作者 付卫红 张鑫钰 刘乃安 《系统工程与电子技术》 北大核心 2025年第2期641-649,共9页
针对单通道条件下同频同调制混合信号分离时存在的计算复杂度高、分离效果差等问题,提出一种基于时域卷积的多尺度融合递归卷积神经网络(recursive convolutional neural network, RCNN),采用编码、分离、解码结构实现单通道盲源分离。... 针对单通道条件下同频同调制混合信号分离时存在的计算复杂度高、分离效果差等问题,提出一种基于时域卷积的多尺度融合递归卷积神经网络(recursive convolutional neural network, RCNN),采用编码、分离、解码结构实现单通道盲源分离。首先,编码模块提取出混合通信信号的编码特征;然后,分离模块采用不同尺度大小的卷积块以进一步提取信号的特征信息,再利用1×1卷积块捕获信号的局部和全局信息,估计出每个源信号的掩码;最后,解码模块利用掩码与混合信号的编码特征恢复源信号波形。仿真结果表明,所提多尺度融合RCNN不仅可以分离出仅有少量参数区别的混合通信信号,而且相较于U型网络(U-Net)降低了约62%的参数量和41%的计算量,同时网络也具有较强的泛化能力,可以高效面对复杂通信环境的挑战。 展开更多
关键词 单通道盲源分离 深度学习 同频同调制信号分离 多尺度融合递归卷积神经网络 通信信号处理
在线阅读 下载PDF
上一页 1 2 27 下一页 到第
使用帮助 返回顶部