Formation control and obstacle avoidance for multi-agent systems have attracted more and more attention. In this paper, the problems of formation control and obstacle avoidance are investigated by means of a consensus...Formation control and obstacle avoidance for multi-agent systems have attracted more and more attention. In this paper, the problems of formation control and obstacle avoidance are investigated by means of a consensus algorithm. A novel distributed control model is proposed for the multi-agent system to form the anticipated formation as well as achieve obstacle avoidance. Based on the consensus algorithm, a distributed control function consisting of three terms (formation control term, velocity matching term, and obstacle avoidance term) is presented. By establishing a novel formation control matrix, a formation control term is constructed such that the agents can converge to consensus and reach the anticipated formation. A new obstacle avoidance function is developed by using the modified potential field approach to make sure that obstacle avoidance can be achieved whether the obstacle is in a dynamic state or a stationary state. A velocity matching term is also put forward to guarantee that the velocities of all agents converge to the same value. Furthermore, stability of the control model is proven. Simulation results are provided to demonstrate the effectiveness of the proposed control.展开更多
This paper investigates the cluster consensus problem for second-order multi-agent systems by applying the pinning control method to a small collection of the agents. Consensus is attained independently for different ...This paper investigates the cluster consensus problem for second-order multi-agent systems by applying the pinning control method to a small collection of the agents. Consensus is attained independently for different agent clusters according to the community structure generated by the group partition of the underlying graph and sufficient conditions for both cluster and general consensus are obtained by using results from algebraic graph theory and the LaSalle Invariance Principle. Finally, some simple simulations are presented to illustrate the technique.展开更多
This paper studies the distributed H∞control problem of identical linear time invariant multi-agent systems subject to external disturbances. A directed graph containing a spanning tree is used to model the communica...This paper studies the distributed H∞control problem of identical linear time invariant multi-agent systems subject to external disturbances. A directed graph containing a spanning tree is used to model the communication topology. Based on the relative states of the neighbor agents and a subset of absolute states of the agents, distributed static H∞controllers are proposed. The concept of an H∞performance region is extended to the directed graph situation. Then the results are used to solve the leader–follower H∞consensus problem. Sufficient conditions are proposed based on bounded real lemma and algebraic graph theory. The effectiveness of the theoretical results is illustrated via numerical simulations.展开更多
Finite-time consensus problem of the leader-following multi-agent system under switching network topologies is studied in this paper. Based on the graph theory, matrix theory, homogeneity with dilation, and LaSalle's...Finite-time consensus problem of the leader-following multi-agent system under switching network topologies is studied in this paper. Based on the graph theory, matrix theory, homogeneity with dilation, and LaSalle's invariance principle, the control protocol of each agent using local information is designed, and the detailed analysis of the leader- following finite-time consensus is provided. Some examples and simulation results are given to illustrate the effectiveness of the obtained theoretical results.展开更多
We investigate the finite-time consensus problem for heterogeneous multi-agent systems composed of first-order and second-order agents.A novel continuous nonlinear distributed consensus protocol is constructed,and fin...We investigate the finite-time consensus problem for heterogeneous multi-agent systems composed of first-order and second-order agents.A novel continuous nonlinear distributed consensus protocol is constructed,and finite-time consensus criteria are obtained for the heterogeneous multi-agent systems.Compared with the existing results,the stationary and kinetic consensuses of the heterogeneous multi-agent systems can be achieved in a finite time respectively.Moreover,the leader can be a first-order or a second-order integrator agent.Finally,some simulation examples are employed to verify the efficiency of the theoretical results.展开更多
The main goal of this paper is to design a team of agents that can accomplish multi-target pursuit formation using a developed leader-follower strategy. It is supposed that every target can accept a certain number of ...The main goal of this paper is to design a team of agents that can accomplish multi-target pursuit formation using a developed leader-follower strategy. It is supposed that every target can accept a certain number of agents. First, each agent can automatically choose its target based on the distance from the agent to the target and the number of agents accepted by the target. In view of the fact that all agents are randomly dispersed in the workplace at the initial time, we present a numbering strategy for them. During the movement of agents, not every agent can always obtain pertinent state information about the targets. So, a developed leader-follower strategy and a pursuit formation algorithm are proposed. Under the proposed method, agents with the same target can maintain a circle formation. Furthermore, it turns out that the pursuit formation algorithm for agents to the desired formation is convergent. Simulation studies are provided to illustrate the effectiveness of the proposed method.展开更多
We consider multi-agent systems with time-varying delays and switching interconnection topologies. By con- structing a suitable Lyapunov-Krasovskii functional and using the reciprocally convex approach, new delay-depe...We consider multi-agent systems with time-varying delays and switching interconnection topologies. By con- structing a suitable Lyapunov-Krasovskii functional and using the reciprocally convex approach, new delay-dependent consensus criteria for the systems are established in terms of linear matrix inequalities (LMIs), which can be easily solved by using various effective optimization algorithms. Two numerical examples are given to illustrate the effectiveness of the proposed methods.展开更多
In this study, the consensus problem for a class of second-order multi-agent systems with nonuniform time delays is investigated. A linear consensus protocol is used to make all agents reach consensus and move with a ...In this study, the consensus problem for a class of second-order multi-agent systems with nonuniform time delays is investigated. A linear consensus protocol is used to make all agents reach consensus and move with a constant velocity. By a frequency-domain analysis, a simplified sufficient condition is given to guarantee the consensus stability of the dynamic system. Finally, the effectiveness of the obtained theoretical results is illustrated through numerical simulations.展开更多
Based on the algebraic graph theory, the networked multi-agent continuous systems are investigated. Firstly, the digraph (directed graph) represents the topology of a networked system, and then a consensus convergen...Based on the algebraic graph theory, the networked multi-agent continuous systems are investigated. Firstly, the digraph (directed graph) represents the topology of a networked system, and then a consensus convergence criterion of system is proposed. Secondly, the issue of stability of multi-agent systems and the consensus convergence problem of information states are all analysed. Furthermore, the consensus equilibrium point of system is proved to be global and asymptotically reach the convex combination of initial states. Finally, two examples are taken to show the effectiveness of the results obtained in this paper.展开更多
In this paper, by using the stability theory of stochastic differential equations, the average-consensus problem with noise perturbation is investigated. It is analytically proved that the consensus could be achieved ...In this paper, by using the stability theory of stochastic differential equations, the average-consensus problem with noise perturbation is investigated. It is analytically proved that the consensus could be achieved with a probability of one. Furthermore, numerical examples are taken to illustrate the effectiveness of the theoretical result.展开更多
Nonlinear consensus protocols for dynamic directed networks of multi-agent systems with fixed and switching topologies are investigated separately in this paper. Based on the centre manifold reduction technique, nonli...Nonlinear consensus protocols for dynamic directed networks of multi-agent systems with fixed and switching topologies are investigated separately in this paper. Based on the centre manifold reduction technique, nonlinear consensus protocols are presented. We prove that a group of agents can reach a β-consensus, the value of which is the group decision value varying from the minimum and the maximum values of the initial states of the agents. Moreover, we derive the conditions to guarantee that all the agents reach a β-consensus on a desired group decision value. Finally, a simulation study concerning the vertical alignment manoeuvere of a team of unmanned air vehicles is performed. Simulation results show that the nonlinear consensus protocols proposed are more effective than the linear protocols for the formation control of the agents and they are an improvement over existing protocols.展开更多
This article investigates the consensus problem of the second-order multi-agent systems with an active leader and coupling time delay in direct graph. One decentralized state control rule is constructed for each agent...This article investigates the consensus problem of the second-order multi-agent systems with an active leader and coupling time delay in direct graph. One decentralized state control rule is constructed for each agent to track the active leader and it is proved that the proposed control scheme enables the consensus to be obtained when the adjacency topology is fixed/switched. Simulation results show effectiveness of the proposed theoretical analysis.展开更多
This paper investigates the consensus tracking problems of second-order multi-agent systems with a virtual leader via event-triggered control. A novel distributed event-triggered transmission scheme is proposed, which...This paper investigates the consensus tracking problems of second-order multi-agent systems with a virtual leader via event-triggered control. A novel distributed event-triggered transmission scheme is proposed, which is intermittently examined at constant sampling instants. Only partial neighbor information and local measurements are required for event detection. Then the corresponding event-triggered consensus tracking protocol is presented to guarantee second-order multi-agent systems to achieve consensus tracking. Numerical simulations are given to illustrate the effectiveness of the proposed strategy.展开更多
In this study, we consider the generation of optimal persistent formations for heterogeneous multi-agent systems, with the leader constraint that only specific agents can act as leaders. We analyze three modes to cont...In this study, we consider the generation of optimal persistent formations for heterogeneous multi-agent systems, with the leader constraint that only specific agents can act as leaders. We analyze three modes to control the optimal persistent formations in two-dimensional space, thereby establishing a model for their constrained generation. Then, we propose an algorithm for generating the optimal persistent formation for heterogeneous multi-agent systems with a leader constraint (LC-HMAS-OPFGA), which is the exact solution algorithm of the model, and we theoretically prove its validity. This algorithm includes two kernel sub-algorithms, which are optimal persistent graph generating algorithm based on a minimum cost arborescence and the shortest path (MCA-SP-OPGGA), and the optimal persistent graph adjusting algorithm based on the shortest path (SP-OPGAA). Under a given agent formation shape and leader constraint, LC-HMAS-OPFGA first generates the network topology and its optimal rigid graph corresponding to this formation shape. Then, LC-HMAS- OPFGA uses MCA-SP-OPGGA to direct the optimal rigid graph to generate the optimal persistent graph. Finally, LC- HMAS-OPFGA uses SP-OPGAA to adjust the optimal persistent graph until it satisfies the leader constraint. We also demonstrate the algorithm, LC-HMAS-OPFGA, with an example and verify its effectiveness.展开更多
We introduce a new consensus pattern, named a successive lag cluster consensus(SLCC), which is a generalized pattern of successive lag consensus(SLC). By applying delay-dependent impulsive control, the SLCC of first-o...We introduce a new consensus pattern, named a successive lag cluster consensus(SLCC), which is a generalized pattern of successive lag consensus(SLC). By applying delay-dependent impulsive control, the SLCC of first-order and second-order multi-agent systems is discussed. Furthermore, based on graph theory and stability theory, some sufficient conditions for the stability of SLCC on multi-agent systems are obtained. Finally, several numerical examples are given to verify the correctness of our theoretical results.展开更多
In this paper, we investigate the group consensus for leaderless multi-agent systems. The group consensus protocol based on the position information from neighboring agents is designed. The network may be subjected to...In this paper, we investigate the group consensus for leaderless multi-agent systems. The group consensus protocol based on the position information from neighboring agents is designed. The network may be subjected to frequent cyberattacks, which is close to an actual case. The cyber-attacks are assumed to be recoverable. By utilizing algebraic graph theory, linear matrix inequality(LMI) and Lyapunov stability theory, the multi-agent systems can achieve group consensus under the proposed control protocol. The sufficient conditions of the group consensus for the multi-agent networks subjected to cyber-attacks are given. Furthermore, the results are extended to the consensus issue of multiple subgroups with cyber-attacks. Numerical simulations are performed to demonstrate the effectiveness of the theoretical results.展开更多
We propose a new approach to discuss the consensus problem of multi-agent systems with time-varying delayed control inputs, switching topologies, and stochastic cyber-attacks under hybrid-triggered mechanism.A Bernoul...We propose a new approach to discuss the consensus problem of multi-agent systems with time-varying delayed control inputs, switching topologies, and stochastic cyber-attacks under hybrid-triggered mechanism.A Bernoulli variable is used to describe the hybrid-triggered scheme, which is introduced to alleviate the burden of the network.The mathematical model of the closed-loop control system is established by taking the influences of time-varying delayed control inputs,switching topologies, and stochastic cyber-attacks into account under the hybrid-triggered scheme.A theorem as the main result is given to make the system consistent based on the theory of Lyapunov stability and linear matrix inequality.Markov jumps with uncertain rates of transitions are applied to describe the switch of topologies.Finally, a simulation example demonstrates the feasibility of the theory in this paper.展开更多
The paper addresses the issue of H_∞ couple-group consensus for a class of discrete-time stochastic multi-agent systems via output-feedback control. Both fixed and Markovian switching communication topologies are con...The paper addresses the issue of H_∞ couple-group consensus for a class of discrete-time stochastic multi-agent systems via output-feedback control. Both fixed and Markovian switching communication topologies are considered. By employing linear transformations, the closed-loop systems are converted into reduced-order systems and the H_∞ couplegroup consensus issue under consideration is changed into a stochastic H_∞ control problem. New conditions for the mean-square asymptotic stability and H_∞ performance of the reduced-order systems are proposed. On the basis of these conditions, constructive approaches for the design of the output-feedback control protocols are developed for the fixed communication topology and the Markovian switching communication topologies, respectively. Finally, two numerical examples are given to illustrate the applicability of the present design approaches.展开更多
This paper investigates the stochastic bounded consensus of leader-following second-order multi-agent systems in a noisy environment. It is assumed that each agent received the information of its neighbors corrupted b...This paper investigates the stochastic bounded consensus of leader-following second-order multi-agent systems in a noisy environment. It is assumed that each agent received the information of its neighbors corrupted by noises and time delays. Based on the graph theory, stochastic tools, and the Lyapunov function method, we derive the sufficient conditions under which the systems would reach stochastic bounded consensus in mean square with the protocol we designed. Finally, a numerical simulation is illustrated to check the effectiveness of the proposed algorithms.展开更多
基金supported by the National High Technology Research and Development Program of China(Grant No.2011AA040103)the Research Foundationof Shanghai Institute of Technology,China(Grant No.B504)
文摘Formation control and obstacle avoidance for multi-agent systems have attracted more and more attention. In this paper, the problems of formation control and obstacle avoidance are investigated by means of a consensus algorithm. A novel distributed control model is proposed for the multi-agent system to form the anticipated formation as well as achieve obstacle avoidance. Based on the consensus algorithm, a distributed control function consisting of three terms (formation control term, velocity matching term, and obstacle avoidance term) is presented. By establishing a novel formation control matrix, a formation control term is constructed such that the agents can converge to consensus and reach the anticipated formation. A new obstacle avoidance function is developed by using the modified potential field approach to make sure that obstacle avoidance can be achieved whether the obstacle is in a dynamic state or a stationary state. A velocity matching term is also put forward to guarantee that the velocities of all agents converge to the same value. Furthermore, stability of the control model is proven. Simulation results are provided to demonstrate the effectiveness of the proposed control.
基金Project supported by the National Natural Science Foundation of China (Grant No. 70571059)
文摘This paper investigates the cluster consensus problem for second-order multi-agent systems by applying the pinning control method to a small collection of the agents. Consensus is attained independently for different agent clusters according to the community structure generated by the group partition of the underlying graph and sufficient conditions for both cluster and general consensus are obtained by using results from algebraic graph theory and the LaSalle Invariance Principle. Finally, some simple simulations are presented to illustrate the technique.
文摘This paper studies the distributed H∞control problem of identical linear time invariant multi-agent systems subject to external disturbances. A directed graph containing a spanning tree is used to model the communication topology. Based on the relative states of the neighbor agents and a subset of absolute states of the agents, distributed static H∞controllers are proposed. The concept of an H∞performance region is extended to the directed graph situation. Then the results are used to solve the leader–follower H∞consensus problem. Sufficient conditions are proposed based on bounded real lemma and algebraic graph theory. The effectiveness of the theoretical results is illustrated via numerical simulations.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.60834002,60873021,and 61004042)the Youth Science Research Project of Chongqing University of Posts and Telecommunications,China(Grant No.A2012-82)the Doctor Start-up Foundation of Chongqing University of Posts and Telecommunications,China(Grant No.A2012-23)
文摘Finite-time consensus problem of the leader-following multi-agent system under switching network topologies is studied in this paper. Based on the graph theory, matrix theory, homogeneity with dilation, and LaSalle's invariance principle, the control protocol of each agent using local information is designed, and the detailed analysis of the leader- following finite-time consensus is provided. Some examples and simulation results are given to illustrate the effectiveness of the obtained theoretical results.
基金Project supported by the National Basic Research Program of China (Grant No. 2010CB731800)the National Natural Science Foundation of China (Grant Nos. 60934003 and 61074065)the Natural Science Foundation of Hebei Province,China (Grant Nos. F2012203119 and 1208085MF111)
文摘We investigate the finite-time consensus problem for heterogeneous multi-agent systems composed of first-order and second-order agents.A novel continuous nonlinear distributed consensus protocol is constructed,and finite-time consensus criteria are obtained for the heterogeneous multi-agent systems.Compared with the existing results,the stationary and kinetic consensuses of the heterogeneous multi-agent systems can be achieved in a finite time respectively.Moreover,the leader can be a first-order or a second-order integrator agent.Finally,some simulation examples are employed to verify the efficiency of the theoretical results.
基金Project partially supported by the National Basic Research Program of China(Grant No.2010CB731800)the Key Project of Natural Science Foundation of China(Grant No.60934003)+1 种基金the National Natural Science Foundation of China(Grant No.61074065)Key Project for Natural Science Research of Hebei Education Department,China(Grant No.ZD200908)
文摘The main goal of this paper is to design a team of agents that can accomplish multi-target pursuit formation using a developed leader-follower strategy. It is supposed that every target can accept a certain number of agents. First, each agent can automatically choose its target based on the distance from the agent to the target and the number of agents accepted by the target. In view of the fact that all agents are randomly dispersed in the workplace at the initial time, we present a numbering strategy for them. During the movement of agents, not every agent can always obtain pertinent state information about the targets. So, a developed leader-follower strategy and a pursuit formation algorithm are proposed. Under the proposed method, agents with the same target can maintain a circle formation. Furthermore, it turns out that the pursuit formation algorithm for agents to the desired formation is convergent. Simulation studies are provided to illustrate the effectiveness of the proposed method.
基金Project supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF)the Ministry of Education,Science and Technology,Korean (Grant Nos. 2012-0000479 and 2011-0009273)the Korea Healthcare Technology R & D Project,Ministry of Health & Welfare,Republic of Korea (Grant No. A100054)
文摘We consider multi-agent systems with time-varying delays and switching interconnection topologies. By con- structing a suitable Lyapunov-Krasovskii functional and using the reciprocally convex approach, new delay-dependent consensus criteria for the systems are established in terms of linear matrix inequalities (LMIs), which can be easily solved by using various effective optimization algorithms. Two numerical examples are given to illustrate the effectiveness of the proposed methods.
基金Project supported by the National Basic Research Program of China (Grant No. 2012CB215203)the Key Program of the National Natural Science Foundation of China (Grant No. 51036002)the Fundamental Research Funds for the Central Universities of China (Grant No. JB2012008)
文摘In this study, the consensus problem for a class of second-order multi-agent systems with nonuniform time delays is investigated. A linear consensus protocol is used to make all agents reach consensus and move with a constant velocity. By a frequency-domain analysis, a simplified sufficient condition is given to guarantee the consensus stability of the dynamic system. Finally, the effectiveness of the obtained theoretical results is illustrated through numerical simulations.
基金Project supported by the National Science Fund for distinguished Young Scholars of China (Grant No 60525303)the Specialized Research Fund for the Doctoral Program of High Education of China (Grant No 20050216001)
文摘Based on the algebraic graph theory, the networked multi-agent continuous systems are investigated. Firstly, the digraph (directed graph) represents the topology of a networked system, and then a consensus convergence criterion of system is proposed. Secondly, the issue of stability of multi-agent systems and the consensus convergence problem of information states are all analysed. Furthermore, the consensus equilibrium point of system is proved to be global and asymptotically reach the convex combination of initial states. Finally, two examples are taken to show the effectiveness of the results obtained in this paper.
文摘In this paper, by using the stability theory of stochastic differential equations, the average-consensus problem with noise perturbation is investigated. It is analytically proved that the consensus could be achieved with a probability of one. Furthermore, numerical examples are taken to illustrate the effectiveness of the theoretical result.
基金supported by the National Natural Science Foundation of China (Grant No 60525303)the Natural Science Foundation of Hebei Province,China (Grant No 2006000270)
文摘Nonlinear consensus protocols for dynamic directed networks of multi-agent systems with fixed and switching topologies are investigated separately in this paper. Based on the centre manifold reduction technique, nonlinear consensus protocols are presented. We prove that a group of agents can reach a β-consensus, the value of which is the group decision value varying from the minimum and the maximum values of the initial states of the agents. Moreover, we derive the conditions to guarantee that all the agents reach a β-consensus on a desired group decision value. Finally, a simulation study concerning the vertical alignment manoeuvere of a team of unmanned air vehicles is performed. Simulation results show that the nonlinear consensus protocols proposed are more effective than the linear protocols for the formation control of the agents and they are an improvement over existing protocols.
基金supported by the National Natural Science Foundation of China(11301492)the Ph.D.Programs Foundation of Ministry of Education of China(20130145120005)the TianYuan Special Funds of the National Natural Science Foundation of China(11226134)
文摘This article investigates the consensus problem of the second-order multi-agent systems with an active leader and coupling time delay in direct graph. One decentralized state control rule is constructed for each agent to track the active leader and it is proved that the proposed control scheme enables the consensus to be obtained when the adjacency topology is fixed/switched. Simulation results show effectiveness of the proposed theoretical analysis.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.61203147,61374047,and 61403168)
文摘This paper investigates the consensus tracking problems of second-order multi-agent systems with a virtual leader via event-triggered control. A novel distributed event-triggered transmission scheme is proposed, which is intermittently examined at constant sampling instants. Only partial neighbor information and local measurements are required for event detection. Then the corresponding event-triggered consensus tracking protocol is presented to guarantee second-order multi-agent systems to achieve consensus tracking. Numerical simulations are given to illustrate the effectiveness of the proposed strategy.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.71671059,71401048,71521001,71690230,71690235,and 71472058)the Anhui Provincial Natural Science Foundation,China(Grant No.1508085MG140)
文摘In this study, we consider the generation of optimal persistent formations for heterogeneous multi-agent systems, with the leader constraint that only specific agents can act as leaders. We analyze three modes to control the optimal persistent formations in two-dimensional space, thereby establishing a model for their constrained generation. Then, we propose an algorithm for generating the optimal persistent formation for heterogeneous multi-agent systems with a leader constraint (LC-HMAS-OPFGA), which is the exact solution algorithm of the model, and we theoretically prove its validity. This algorithm includes two kernel sub-algorithms, which are optimal persistent graph generating algorithm based on a minimum cost arborescence and the shortest path (MCA-SP-OPGGA), and the optimal persistent graph adjusting algorithm based on the shortest path (SP-OPGAA). Under a given agent formation shape and leader constraint, LC-HMAS-OPFGA first generates the network topology and its optimal rigid graph corresponding to this formation shape. Then, LC-HMAS- OPFGA uses MCA-SP-OPGGA to direct the optimal rigid graph to generate the optimal persistent graph. Finally, LC- HMAS-OPFGA uses SP-OPGAA to adjust the optimal persistent graph until it satisfies the leader constraint. We also demonstrate the algorithm, LC-HMAS-OPFGA, with an example and verify its effectiveness.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.61663006 and 11661026)the Guangxi Natural Science Foundation Program,China(Grant No.2015GXNSFBB139002)+1 种基金the Guangxi Key Laboratory of Cryptography and Information Security,China(Grant No.GCIS201612)the Innovation of GUET Graduate Education,China(Grant No.2018YJCX57)
文摘We introduce a new consensus pattern, named a successive lag cluster consensus(SLCC), which is a generalized pattern of successive lag consensus(SLC). By applying delay-dependent impulsive control, the SLCC of first-order and second-order multi-agent systems is discussed. Furthermore, based on graph theory and stability theory, some sufficient conditions for the stability of SLCC on multi-agent systems are obtained. Finally, several numerical examples are given to verify the correctness of our theoretical results.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.61807016 and 61772013)the Natural Science Foundation of Jiangsu Province,China(Grant No.BK20181342)
文摘In this paper, we investigate the group consensus for leaderless multi-agent systems. The group consensus protocol based on the position information from neighboring agents is designed. The network may be subjected to frequent cyberattacks, which is close to an actual case. The cyber-attacks are assumed to be recoverable. By utilizing algebraic graph theory, linear matrix inequality(LMI) and Lyapunov stability theory, the multi-agent systems can achieve group consensus under the proposed control protocol. The sufficient conditions of the group consensus for the multi-agent networks subjected to cyber-attacks are given. Furthermore, the results are extended to the consensus issue of multiple subgroups with cyber-attacks. Numerical simulations are performed to demonstrate the effectiveness of the theoretical results.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.61074159 and 61703286)
文摘We propose a new approach to discuss the consensus problem of multi-agent systems with time-varying delayed control inputs, switching topologies, and stochastic cyber-attacks under hybrid-triggered mechanism.A Bernoulli variable is used to describe the hybrid-triggered scheme, which is introduced to alleviate the burden of the network.The mathematical model of the closed-loop control system is established by taking the influences of time-varying delayed control inputs,switching topologies, and stochastic cyber-attacks into account under the hybrid-triggered scheme.A theorem as the main result is given to make the system consistent based on the theory of Lyapunov stability and linear matrix inequality.Markov jumps with uncertain rates of transitions are applied to describe the switch of topologies.Finally, a simulation example demonstrates the feasibility of the theory in this paper.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.61503002 and 61573008)
文摘The paper addresses the issue of H_∞ couple-group consensus for a class of discrete-time stochastic multi-agent systems via output-feedback control. Both fixed and Markovian switching communication topologies are considered. By employing linear transformations, the closed-loop systems are converted into reduced-order systems and the H_∞ couplegroup consensus issue under consideration is changed into a stochastic H_∞ control problem. New conditions for the mean-square asymptotic stability and H_∞ performance of the reduced-order systems are proposed. On the basis of these conditions, constructive approaches for the design of the output-feedback control protocols are developed for the fixed communication topology and the Markovian switching communication topologies, respectively. Finally, two numerical examples are given to illustrate the applicability of the present design approaches.
基金supported by the National Natural Science Foundation of China(Grant Nos.61573156,61273126,61503142,61272382,and 61573154)the Fundamental Research Funds for the Central Universities(Grant No.x2zd D2153620)
文摘This paper investigates the stochastic bounded consensus of leader-following second-order multi-agent systems in a noisy environment. It is assumed that each agent received the information of its neighbors corrupted by noises and time delays. Based on the graph theory, stochastic tools, and the Lyapunov function method, we derive the sufficient conditions under which the systems would reach stochastic bounded consensus in mean square with the protocol we designed. Finally, a numerical simulation is illustrated to check the effectiveness of the proposed algorithms.