The detection and ima ging of moving targets based on airborne synthetic aperture radar (SAR) is a cru cial technique for the modern radar. Firstly, the mathematical model of SAR ech o signal which comes from moving t...The detection and ima ging of moving targets based on airborne synthetic aperture radar (SAR) is a cru cial technique for the modern radar. Firstly, the mathematical model of SAR ech o signal which comes from moving targets is constructed. Based on this model, th e features of moving target imaging are introduced and the effects of target mov ement to SAR imaging are analyzed. Then the development and the status of this t echnique are reviewed in detail. Finally, some frontiers of this field are point ed out.展开更多
In recent years,moving target detection methods based on low-rank and sparse matrix decomposition have been developed,and they have achieved good results.However,there is not enough interpretation to support the assum...In recent years,moving target detection methods based on low-rank and sparse matrix decomposition have been developed,and they have achieved good results.However,there is not enough interpretation to support the assumption that there is a high correlation among the reverberations after each transmitting pulse.In order to explain the correlation of reverberations,a new reverberation model is proposed from the perspective of scattering cells in this paper.The scattering cells are the subarea divided from the detection area.The energy fluctuation of a scattering cell with time and the influence of the neighboring cells are considered.Key parameters of the model were analyzed by numerical analysis,and the applicability of the model was verified by experimental analysis.The results showed that the model can be used for several simulations to evaluate the performance of moving target detection methods.展开更多
In this paper,a non-contact auto-focusing method is proposed for the essential function of auto-focusing in mobile devices.Firstly,we introduce an effective target detection method combining the 3-frame difference alg...In this paper,a non-contact auto-focusing method is proposed for the essential function of auto-focusing in mobile devices.Firstly,we introduce an effective target detection method combining the 3-frame difference algorithm and Gauss mixture model,which is robust for complex and changing background.Secondly,a stable tracking method is proposed using the local binary patter feature and camshift tracker.Auto-focusing is achieved by using the coordinate obtained during the detection and tracking procedure.Experiments show that the proposed method can deal with complex and changing background.When there exist multiple moving objects,the proposed method also has good detection and tracking performance.The proposed method implements high efficiency,which means it can be easily used in real mobile device systems.展开更多
针对数字射频存储器(Digital Radio Frequency Memory,DRFM)干扰作用下,线性调频脉压雷达无法稳定检测与跟踪目标的问题,提出了一种基于动目标检测的DRFM干扰对抗算法。该算法利用动目标检测处理分别将目标和干扰回波的能量进行相参积...针对数字射频存储器(Digital Radio Frequency Memory,DRFM)干扰作用下,线性调频脉压雷达无法稳定检测与跟踪目标的问题,提出了一种基于动目标检测的DRFM干扰对抗算法。该算法利用动目标检测处理分别将目标和干扰回波的能量进行相参积累这一特性,根据恒虚警检测后峰值分选出两种回波信号,通过逆动目标检测和逆脉冲压缩处理恢复时域信号,最后使用相位统计次数方差鉴别目标和干扰。仿真结果表明,在低信噪比条件下,该方法能够有效地对抗DRFM干扰。展开更多
文摘The detection and ima ging of moving targets based on airborne synthetic aperture radar (SAR) is a cru cial technique for the modern radar. Firstly, the mathematical model of SAR ech o signal which comes from moving targets is constructed. Based on this model, th e features of moving target imaging are introduced and the effects of target mov ement to SAR imaging are analyzed. Then the development and the status of this t echnique are reviewed in detail. Finally, some frontiers of this field are point ed out.
基金supported by the National Natural Science Foundation of China(Grant Nos.61631008,61471137,50509059,and No.51779061)the Fok Ying-Tong Education Foundation,China(Grant No.151007)the Heilongjiang Province Outstanding Youth Science Fund(JC2017017)
文摘In recent years,moving target detection methods based on low-rank and sparse matrix decomposition have been developed,and they have achieved good results.However,there is not enough interpretation to support the assumption that there is a high correlation among the reverberations after each transmitting pulse.In order to explain the correlation of reverberations,a new reverberation model is proposed from the perspective of scattering cells in this paper.The scattering cells are the subarea divided from the detection area.The energy fluctuation of a scattering cell with time and the influence of the neighboring cells are considered.Key parameters of the model were analyzed by numerical analysis,and the applicability of the model was verified by experimental analysis.The results showed that the model can be used for several simulations to evaluate the performance of moving target detection methods.
基金supported by ZTE Industry-Academia-Research Cooperation Funds
文摘In this paper,a non-contact auto-focusing method is proposed for the essential function of auto-focusing in mobile devices.Firstly,we introduce an effective target detection method combining the 3-frame difference algorithm and Gauss mixture model,which is robust for complex and changing background.Secondly,a stable tracking method is proposed using the local binary patter feature and camshift tracker.Auto-focusing is achieved by using the coordinate obtained during the detection and tracking procedure.Experiments show that the proposed method can deal with complex and changing background.When there exist multiple moving objects,the proposed method also has good detection and tracking performance.The proposed method implements high efficiency,which means it can be easily used in real mobile device systems.
文摘针对数字射频存储器(Digital Radio Frequency Memory,DRFM)干扰作用下,线性调频脉压雷达无法稳定检测与跟踪目标的问题,提出了一种基于动目标检测的DRFM干扰对抗算法。该算法利用动目标检测处理分别将目标和干扰回波的能量进行相参积累这一特性,根据恒虚警检测后峰值分选出两种回波信号,通过逆动目标检测和逆脉冲压缩处理恢复时域信号,最后使用相位统计次数方差鉴别目标和干扰。仿真结果表明,在低信噪比条件下,该方法能够有效地对抗DRFM干扰。
文摘运动目标传统检测方法只考虑图像的亮度或纹理等某一种特性,受特异值影响较大,对噪声比较敏感,鲁棒性也不够好,而且背景恢复精度不高。针对以上局限性,提出一种融合结构相似度(structural similarity,SSIM)全参考模型和鲁棒主成分分析(robust principal component analysis,RPCA)的运动目标检测方法。此方法综合考虑图像的亮度、对比度和结构三种特性,不采用传统的背景减除法,而是把图像像素点的结构相似度作为度量来实现运动对象与背景的分离。实验结果表明,此方法准确率可达0.95,且F度量较传统运动目标检测算法平均提升0.15,总体上比传统方法更具优势。