由于复杂海况随机海浪对船舶航行及人命安全造成威胁,通过构建海浪波高预测模型实现高海况海浪预警对提升航行安全具有重要意义。针对海浪波高预测问题,本文提出一种MAF-GWO-LSTM预测模型。首先利用滑动平均滤波器(Moving Average Filte...由于复杂海况随机海浪对船舶航行及人命安全造成威胁,通过构建海浪波高预测模型实现高海况海浪预警对提升航行安全具有重要意义。针对海浪波高预测问题,本文提出一种MAF-GWO-LSTM预测模型。首先利用滑动平均滤波器(Moving Average Filter,MAF)对实测海浪数据进行处理得到有效波高的光滑趋势序列,作为预测模型的输入训练集;再选用长短时记忆神经网络LSTM作为预测浪模型,依据灰狼优化算法(Grey Wolf Optimization,GWO)对滑动窗口MA及神经网络训练过程中的参数进行自适应寻优,并以南海实测有效波高数据进行验证。研究结果表明,采用MAF滤波有利于提取海浪有效波高特征,再通过GWO-LSTM预测模型优化神经网络参数,最优参数下波高预报精度达到R^(2)=0.991 0。论文研究可为高海况下海浪有效波高预报预警提供一种有效手段。展开更多
提出了一类用于非线性时间序列建模的混合自回归滑动平均模型(MARMA).该模型是由K个平稳或非平稳的ARMA分量经过混合得到的.讨论了MARMA模型的平稳性条件和自相关函数.给出了MARMA模型参数估计的期望极大化(expectation maximization)算...提出了一类用于非线性时间序列建模的混合自回归滑动平均模型(MARMA).该模型是由K个平稳或非平稳的ARMA分量经过混合得到的.讨论了MARMA模型的平稳性条件和自相关函数.给出了MARMA模型参数估计的期望极大化(expectation maximization)算法.运用贝叶斯信息准则(Bayes information criterion)来选择该模型.MARMA模型分布形式富于变化的特征使得它能够对具有多峰分布以及条件异方差的序列进行建模.通过两个实例验证了该模型,并和其他模型进行比较,结果表明MARMA模型能够更好地描述这些数据的特征.展开更多
文摘由于复杂海况随机海浪对船舶航行及人命安全造成威胁,通过构建海浪波高预测模型实现高海况海浪预警对提升航行安全具有重要意义。针对海浪波高预测问题,本文提出一种MAF-GWO-LSTM预测模型。首先利用滑动平均滤波器(Moving Average Filter,MAF)对实测海浪数据进行处理得到有效波高的光滑趋势序列,作为预测模型的输入训练集;再选用长短时记忆神经网络LSTM作为预测浪模型,依据灰狼优化算法(Grey Wolf Optimization,GWO)对滑动窗口MA及神经网络训练过程中的参数进行自适应寻优,并以南海实测有效波高数据进行验证。研究结果表明,采用MAF滤波有利于提取海浪有效波高特征,再通过GWO-LSTM预测模型优化神经网络参数,最优参数下波高预报精度达到R^(2)=0.991 0。论文研究可为高海况下海浪有效波高预报预警提供一种有效手段。
文摘提出了一类用于非线性时间序列建模的混合自回归滑动平均模型(MARMA).该模型是由K个平稳或非平稳的ARMA分量经过混合得到的.讨论了MARMA模型的平稳性条件和自相关函数.给出了MARMA模型参数估计的期望极大化(expectation maximization)算法.运用贝叶斯信息准则(Bayes information criterion)来选择该模型.MARMA模型分布形式富于变化的特征使得它能够对具有多峰分布以及条件异方差的序列进行建模.通过两个实例验证了该模型,并和其他模型进行比较,结果表明MARMA模型能够更好地描述这些数据的特征.
文摘传统基于离线模型参数和典型运行方式设计的电力系统阻尼控制器存在适应性问题,提出一种基于辨识的自适应控制器设计方法,可解决一般自适应控制中快速性和准确性要求之间的矛盾。所用的多元自回归滑动平均模型(auto regressive moving averaging vector,ARMAV)辨识在电网正常运行过程中针对由负荷等随机扰动引起的类噪声信号进行;在综合考虑辨识误差、阻尼要求和稳定裕度基础上,提出阻尼控制零极点配置基本原则,并设计相应的遗传算法优化方法。为了充分检验上述辨识与控制系统的效果,基于广域测量平台对其进行软硬件实现,并在东北电网简化系统中进行实时数字仿真(real time digital simulation,RTDS)测试,实验结果说明了所提方法的可行性和有效性。