A compliant landing strategy for a trotting quadruped robot on unknown rough terrains based on contact force control is presented. Firstly, in order to lower the disturbance caused by the landing impact force, a landi...A compliant landing strategy for a trotting quadruped robot on unknown rough terrains based on contact force control is presented. Firstly, in order to lower the disturbance caused by the landing impact force, a landing phase is added between the swing phase and the stance phase, where the desired contact force is set as a small positive constant. Secondly, the joint torque optimization of the stance legs is formulated as a quadratic programming(QP) problem subject to equality and inequality/bound constraints. And a primal-dual dynamical system solver based on linear variational inequalities(LVI) is applied to solve this QP problem. Furthermore, based on the optimization results, a hybrid motion/force robust controller is designed to realize the tracking of the contact force, while the constraints of the stance feet landing angles are fulfilled simultaneously. Finally, the experiments are performed to validate the proposed methods.展开更多
Motion planning is critical to realize the autonomous operation of mobile robots.As the complexity and randomness of robot application scenarios increase,the planning capability of the classical hierarchical motion pl...Motion planning is critical to realize the autonomous operation of mobile robots.As the complexity and randomness of robot application scenarios increase,the planning capability of the classical hierarchical motion planners is challenged.With the development of machine learning,the deep reinforcement learning(DRL)-based motion planner has gradually become a research hotspot due to its several advantageous feature.The DRL-based motion planner is model-free and does not rely on the prior structured map.Most importantly,the DRL-based motion planner achieves the unification of the global planner and the local planner.In this paper,we provide a systematic review of various motion planning methods.Firstly,we summarize the representative and state-of-the-art works for each submodule of the classical motion planning architecture and analyze their performance features.Then,we concentrate on summarizing reinforcement learning(RL)-based motion planning approaches,including motion planners combined with RL improvements,map-free RL-based motion planners,and multi-robot cooperative planning methods.Finally,we analyze the urgent challenges faced by these mainstream RLbased motion planners in detail,review some state-of-the-art works for these issues,and propose suggestions for future research.展开更多
Conical picks are important tools for rock mechanical excavation.Mean cutting force(MCF)of conical pick determines the suitability of the target rock for mechanical excavation.Accurate evaluation of MCF is important f...Conical picks are important tools for rock mechanical excavation.Mean cutting force(MCF)of conical pick determines the suitability of the target rock for mechanical excavation.Accurate evaluation of MCF is important for pick design and rock cutting.This study proposed hybrid methods composed of boosting trees and Bayesian optimization(BO)for accurate evaluation of MCF.220 datasets including uniaxial compression strength,tensile strength,tip angle(θ),attack angle,and cutting depth,were collected.Four boosting trees were developed based on the database to predict MCF.BO optimized the hyper-parameters of these boosting trees.Model evaluation suggested that the proposed hybrid models outperformed many commonly utilized machine learning models.The hybrid model composed of BO and categorical boosting(BO-CatBoost)was the best.Its outstanding performance was attributed to its advantages in dealing with categorical features(θincluded 6 types of angles and could be considered as categorical features).A graphical user interface was developed to facilitate the application of BO-CatBoost for the estimation of MCF.Moreover,the influences of the input parameters on the model and their relationship with MCF were analyzed.Whenθincreased from 80°to 90°,it had a significant contribution to the increase of MCF.展开更多
The subversive nature of information war lies not only in the information itself, but also in the circulation and application of information. It has always been a challenge to quantitatively analyze the function and e...The subversive nature of information war lies not only in the information itself, but also in the circulation and application of information. It has always been a challenge to quantitatively analyze the function and effect of information flow through command, control, communications, computer, kill, intelligence,surveillance, reconnaissance (C4KISR) system. In this work, we propose a framework of force of information influence and the methods for calculating the force of information influence between C4KISR nodes of sensing, intelligence processing,decision making and fire attack. Specifically, the basic concept of force of information influence between nodes in C4KISR system is formally proposed and its mathematical definition is provided. Then, based on the information entropy theory, the model of force of information influence between C4KISR system nodes is constructed. Finally, the simulation experiments have been performed under an air defense and attack scenario. The experimental results show that, with the proposed force of information influence framework, we can effectively evaluate the contribution of information circulation through different C4KISR system nodes to the corresponding tasks. Our framework of force of information influence can also serve as an effective tool for the design and dynamic reconfiguration of C4KISR system architecture.展开更多
The design and fabrication processes of a novel scanner with minimized coupling motions for a high-speed atomic force microscope (AFM) were addressed. An appropriate design modification was proposed through the anal...The design and fabrication processes of a novel scanner with minimized coupling motions for a high-speed atomic force microscope (AFM) were addressed. An appropriate design modification was proposed through the analyses of the dynamic characteristics of existing linear motion stages using a dynamic analysis program, Recurdyn. Because the scanning speed of each direction may differ, the linear motion stage for a high-speed scanner was designed to have different resonance frequencies for the modes, with one dominant displacement in the desired directions. This objective was achieved by using one-direction flexure mechanisms for each direction and mounting one stage for fast motion on the other stage for slow motion. This unsymmetrical configuration separated the frequencies of two vibration modes with one dominant displacement in each desired direction, and hence suppressed the coupling between motions in two directions. A pair of actuators was used for each axis to decrease the crosstalk between the two motions and give a sufficient force to actuate the slow motion stage, which carried the fast motion stage, A lossy material, such as grease, was inserted into the flexure hinge to suppress vibration problems that occurred when using an input triangular waveforrn. With these design modifications and the vibration suppression method, a novel scanner with a scanning speed greater than 20 Hz is achieved.展开更多
The maneuverability and stealth of aerial-aquatic vehicles(AAVs)is of significant importance for future integrated air-sea combat missions.To improve the maneuverability and stealth of AAVs near the water surface,this...The maneuverability and stealth of aerial-aquatic vehicles(AAVs)is of significant importance for future integrated air-sea combat missions.To improve the maneuverability and stealth of AAVs near the water surface,this paper proposed a high-maneuverability skipping motion strategy for the tandem twin-rotor AAV,inspired by the motion behavior of the flying fish to avoid aquatic and aerial predators near the water surface.The novel tandem twin-rotor AAV was employed as the research subject and a strategybased ADRC control method for validation,comparing it with a strategy-based PID control method.The results indicate that both control methods enable the designed AAV to achieve high stealth and maneuverability near the water surface with robust control stability.The strategy-based ADRC control method exhibits a certain advantage in controlling height,pitch angle,and reducing impact force.This motion strategy will offer an inspiring approach for the practical application of AAVs to some extent.展开更多
研究发现,Linux的内核模块具有良好的可控性而Linux的软中断具有极强的实时性。提出把两者有机地结合起来作为逻辑功能块(Logical Functional B lock,LFB)的实现机制,并用流标识号(PkfID)来描述LFB。实验表明采用这种方法实现的LFB能很...研究发现,Linux的内核模块具有良好的可控性而Linux的软中断具有极强的实时性。提出把两者有机地结合起来作为逻辑功能块(Logical Functional B lock,LFB)的实现机制,并用流标识号(PkfID)来描述LFB。实验表明采用这种方法实现的LFB能很好地满足ForCES需求(RFC 3654)。展开更多
基金Project(61473304)supported by the National Natural Science Foundation of ChinaProject(2015AA042202)supported by Hi-tech Research and Development Program of China
文摘A compliant landing strategy for a trotting quadruped robot on unknown rough terrains based on contact force control is presented. Firstly, in order to lower the disturbance caused by the landing impact force, a landing phase is added between the swing phase and the stance phase, where the desired contact force is set as a small positive constant. Secondly, the joint torque optimization of the stance legs is formulated as a quadratic programming(QP) problem subject to equality and inequality/bound constraints. And a primal-dual dynamical system solver based on linear variational inequalities(LVI) is applied to solve this QP problem. Furthermore, based on the optimization results, a hybrid motion/force robust controller is designed to realize the tracking of the contact force, while the constraints of the stance feet landing angles are fulfilled simultaneously. Finally, the experiments are performed to validate the proposed methods.
基金supported by the National Natural Science Foundation of China (62173251)the“Zhishan”Scholars Programs of Southeast University+1 种基金the Fundamental Research Funds for the Central UniversitiesShanghai Gaofeng&Gaoyuan Project for University Academic Program Development (22120210022)
文摘Motion planning is critical to realize the autonomous operation of mobile robots.As the complexity and randomness of robot application scenarios increase,the planning capability of the classical hierarchical motion planners is challenged.With the development of machine learning,the deep reinforcement learning(DRL)-based motion planner has gradually become a research hotspot due to its several advantageous feature.The DRL-based motion planner is model-free and does not rely on the prior structured map.Most importantly,the DRL-based motion planner achieves the unification of the global planner and the local planner.In this paper,we provide a systematic review of various motion planning methods.Firstly,we summarize the representative and state-of-the-art works for each submodule of the classical motion planning architecture and analyze their performance features.Then,we concentrate on summarizing reinforcement learning(RL)-based motion planning approaches,including motion planners combined with RL improvements,map-free RL-based motion planners,and multi-robot cooperative planning methods.Finally,we analyze the urgent challenges faced by these mainstream RLbased motion planners in detail,review some state-of-the-art works for these issues,and propose suggestions for future research.
基金Project(52374153)supported by the National Natural Science Foundation of ChinaProject(2023zzts0726)supported by the Fundamental Research Funds for the Central Universities of Central South University,China。
文摘Conical picks are important tools for rock mechanical excavation.Mean cutting force(MCF)of conical pick determines the suitability of the target rock for mechanical excavation.Accurate evaluation of MCF is important for pick design and rock cutting.This study proposed hybrid methods composed of boosting trees and Bayesian optimization(BO)for accurate evaluation of MCF.220 datasets including uniaxial compression strength,tensile strength,tip angle(θ),attack angle,and cutting depth,were collected.Four boosting trees were developed based on the database to predict MCF.BO optimized the hyper-parameters of these boosting trees.Model evaluation suggested that the proposed hybrid models outperformed many commonly utilized machine learning models.The hybrid model composed of BO and categorical boosting(BO-CatBoost)was the best.Its outstanding performance was attributed to its advantages in dealing with categorical features(θincluded 6 types of angles and could be considered as categorical features).A graphical user interface was developed to facilitate the application of BO-CatBoost for the estimation of MCF.Moreover,the influences of the input parameters on the model and their relationship with MCF were analyzed.Whenθincreased from 80°to 90°,it had a significant contribution to the increase of MCF.
基金supported by the Natural Science Foundation Research Plan of Shanxi Province (2023JCQN0728)。
文摘The subversive nature of information war lies not only in the information itself, but also in the circulation and application of information. It has always been a challenge to quantitatively analyze the function and effect of information flow through command, control, communications, computer, kill, intelligence,surveillance, reconnaissance (C4KISR) system. In this work, we propose a framework of force of information influence and the methods for calculating the force of information influence between C4KISR nodes of sensing, intelligence processing,decision making and fire attack. Specifically, the basic concept of force of information influence between nodes in C4KISR system is formally proposed and its mathematical definition is provided. Then, based on the information entropy theory, the model of force of information influence between C4KISR system nodes is constructed. Finally, the simulation experiments have been performed under an air defense and attack scenario. The experimental results show that, with the proposed force of information influence framework, we can effectively evaluate the contribution of information circulation through different C4KISR system nodes to the corresponding tasks. Our framework of force of information influence can also serve as an effective tool for the design and dynamic reconfiguration of C4KISR system architecture.
基金Work(R0A-2007-000-20042-0) partly supported by the Second Stage of Brain Korea 21 Projectspartly by the Korea Science and Engineering Foundation (KOSEF) through the National Research Laboratory Program funded by the Ministry of Science and Technology of Korea
文摘The design and fabrication processes of a novel scanner with minimized coupling motions for a high-speed atomic force microscope (AFM) were addressed. An appropriate design modification was proposed through the analyses of the dynamic characteristics of existing linear motion stages using a dynamic analysis program, Recurdyn. Because the scanning speed of each direction may differ, the linear motion stage for a high-speed scanner was designed to have different resonance frequencies for the modes, with one dominant displacement in the desired directions. This objective was achieved by using one-direction flexure mechanisms for each direction and mounting one stage for fast motion on the other stage for slow motion. This unsymmetrical configuration separated the frequencies of two vibration modes with one dominant displacement in each desired direction, and hence suppressed the coupling between motions in two directions. A pair of actuators was used for each axis to decrease the crosstalk between the two motions and give a sufficient force to actuate the slow motion stage, which carried the fast motion stage, A lossy material, such as grease, was inserted into the flexure hinge to suppress vibration problems that occurred when using an input triangular waveforrn. With these design modifications and the vibration suppression method, a novel scanner with a scanning speed greater than 20 Hz is achieved.
基金supported by Southern Marine Science and Guangdong Laboratory(Zhuhai)(Grant No.SML2023SP229)。
文摘The maneuverability and stealth of aerial-aquatic vehicles(AAVs)is of significant importance for future integrated air-sea combat missions.To improve the maneuverability and stealth of AAVs near the water surface,this paper proposed a high-maneuverability skipping motion strategy for the tandem twin-rotor AAV,inspired by the motion behavior of the flying fish to avoid aquatic and aerial predators near the water surface.The novel tandem twin-rotor AAV was employed as the research subject and a strategybased ADRC control method for validation,comparing it with a strategy-based PID control method.The results indicate that both control methods enable the designed AAV to achieve high stealth and maneuverability near the water surface with robust control stability.The strategy-based ADRC control method exhibits a certain advantage in controlling height,pitch angle,and reducing impact force.This motion strategy will offer an inspiring approach for the practical application of AAVs to some extent.
文摘研究发现,Linux的内核模块具有良好的可控性而Linux的软中断具有极强的实时性。提出把两者有机地结合起来作为逻辑功能块(Logical Functional B lock,LFB)的实现机制,并用流标识号(PkfID)来描述LFB。实验表明采用这种方法实现的LFB能很好地满足ForCES需求(RFC 3654)。