A measurement system for the scattering characteristics of warhead fragments based on high-speed imaging systems offers advantages such as simple deployment,flexible maneuverability,and high spatiotemporal resolution,...A measurement system for the scattering characteristics of warhead fragments based on high-speed imaging systems offers advantages such as simple deployment,flexible maneuverability,and high spatiotemporal resolution,enabling the acquisition of full-process data of the fragment scattering process.However,mismatches between camera frame rates and target velocities can lead to long motion blur tails of high-speed fragment targets,resulting in low signal-to-noise ratios and rendering conventional detection algorithms ineffective in dynamic strong interference testing environments.In this study,we propose a detection framework centered on dynamic strong interference disturbance signal separation and suppression.We introduce a mixture Gaussian model constrained under a joint spatialtemporal-transform domain Dirichlet process,combined with total variation regularization to achieve disturbance signal suppression.Experimental results demonstrate that the proposed disturbance suppression method can be integrated with certain conventional motion target detection tasks,enabling adaptation to real-world data to a certain extent.Moreover,we provide a specific implementation of this process,which achieves a detection rate close to 100%with an approximate 0%false alarm rate in multiple sets of real target field test data.This research effectively advances the development of the field of damage parameter testing.展开更多
A method to detect airports in large space-borne synthetic aperture radar(SAR) imagery is studied.First,the large SAR imagery is segmented according to amplitude characteristics using maximum a posteriori(MAP) est...A method to detect airports in large space-borne synthetic aperture radar(SAR) imagery is studied.First,the large SAR imagery is segmented according to amplitude characteristics using maximum a posteriori(MAP) estimator based on the heavytailed Rayleigh model.The attention is then paid on the object of interest(OOI) extracted from the large images.The minimumarea enclosing rectangle(MER) of OOI is created via a rotating calipers algorithm.The projection histogram(PH) of MER for OOI is then computed and the scale and rotation invariant feature for OOI are extracted from the statistical characteristics of PH.A support vector machine(SVM) classifier is trained using those feature parameters and the airport is detected by the SVM classifier and Hough transform.The application in space-borne SAR images demonstrates the effectiveness of the proposed method.展开更多
Aerial image sequence mosaicking is one of the chal-lenging research fields in computer vision.To obtain large-scale orthophoto maps with object detection information,we propose a vision-based image mosaicking algorit...Aerial image sequence mosaicking is one of the chal-lenging research fields in computer vision.To obtain large-scale orthophoto maps with object detection information,we propose a vision-based image mosaicking algorithm without any extra location data.According to object detection results,we define a complexity factor to describe the importance of each input ima-ge and dynamically optimize the feature extraction process.The feature points extraction and matching processes are mainly guided by the speeded-up robust features(SURF)and the grid motion statistic(GMS)algorithm respectively.A robust refer-ence frame selection method is proposed to eliminate the trans-formation distortion by searching for the center area based on overlaps.Besides,the sparse Levenberg-Marquardt(LM)al-gorithm and the heavy occluded frames removal method are ap-plied to reduce accumulated errors and further improve the mo-saicking performance.The proposed algorithm is performed by using multithreading and graphics processing unit(GPU)accel-eration on several aerial image datasets.Extensive experiment results demonstrate that our algorithm outperforms most of the existing aerial image mosaicking methods in visual quality while guaranteeing a high calculation speed.展开更多
文摘A measurement system for the scattering characteristics of warhead fragments based on high-speed imaging systems offers advantages such as simple deployment,flexible maneuverability,and high spatiotemporal resolution,enabling the acquisition of full-process data of the fragment scattering process.However,mismatches between camera frame rates and target velocities can lead to long motion blur tails of high-speed fragment targets,resulting in low signal-to-noise ratios and rendering conventional detection algorithms ineffective in dynamic strong interference testing environments.In this study,we propose a detection framework centered on dynamic strong interference disturbance signal separation and suppression.We introduce a mixture Gaussian model constrained under a joint spatialtemporal-transform domain Dirichlet process,combined with total variation regularization to achieve disturbance signal suppression.Experimental results demonstrate that the proposed disturbance suppression method can be integrated with certain conventional motion target detection tasks,enabling adaptation to real-world data to a certain extent.Moreover,we provide a specific implementation of this process,which achieves a detection rate close to 100%with an approximate 0%false alarm rate in multiple sets of real target field test data.This research effectively advances the development of the field of damage parameter testing.
文摘A method to detect airports in large space-borne synthetic aperture radar(SAR) imagery is studied.First,the large SAR imagery is segmented according to amplitude characteristics using maximum a posteriori(MAP) estimator based on the heavytailed Rayleigh model.The attention is then paid on the object of interest(OOI) extracted from the large images.The minimumarea enclosing rectangle(MER) of OOI is created via a rotating calipers algorithm.The projection histogram(PH) of MER for OOI is then computed and the scale and rotation invariant feature for OOI are extracted from the statistical characteristics of PH.A support vector machine(SVM) classifier is trained using those feature parameters and the airport is detected by the SVM classifier and Hough transform.The application in space-borne SAR images demonstrates the effectiveness of the proposed method.
基金supported by the National Natural Science Foundation of China(6160304061973036).
文摘Aerial image sequence mosaicking is one of the chal-lenging research fields in computer vision.To obtain large-scale orthophoto maps with object detection information,we propose a vision-based image mosaicking algorithm without any extra location data.According to object detection results,we define a complexity factor to describe the importance of each input ima-ge and dynamically optimize the feature extraction process.The feature points extraction and matching processes are mainly guided by the speeded-up robust features(SURF)and the grid motion statistic(GMS)algorithm respectively.A robust refer-ence frame selection method is proposed to eliminate the trans-formation distortion by searching for the center area based on overlaps.Besides,the sparse Levenberg-Marquardt(LM)al-gorithm and the heavy occluded frames removal method are ap-plied to reduce accumulated errors and further improve the mo-saicking performance.The proposed algorithm is performed by using multithreading and graphics processing unit(GPU)accel-eration on several aerial image datasets.Extensive experiment results demonstrate that our algorithm outperforms most of the existing aerial image mosaicking methods in visual quality while guaranteeing a high calculation speed.