A measurement system for the scattering characteristics of warhead fragments based on high-speed imaging systems offers advantages such as simple deployment,flexible maneuverability,and high spatiotemporal resolution,...A measurement system for the scattering characteristics of warhead fragments based on high-speed imaging systems offers advantages such as simple deployment,flexible maneuverability,and high spatiotemporal resolution,enabling the acquisition of full-process data of the fragment scattering process.However,mismatches between camera frame rates and target velocities can lead to long motion blur tails of high-speed fragment targets,resulting in low signal-to-noise ratios and rendering conventional detection algorithms ineffective in dynamic strong interference testing environments.In this study,we propose a detection framework centered on dynamic strong interference disturbance signal separation and suppression.We introduce a mixture Gaussian model constrained under a joint spatialtemporal-transform domain Dirichlet process,combined with total variation regularization to achieve disturbance signal suppression.Experimental results demonstrate that the proposed disturbance suppression method can be integrated with certain conventional motion target detection tasks,enabling adaptation to real-world data to a certain extent.Moreover,we provide a specific implementation of this process,which achieves a detection rate close to 100%with an approximate 0%false alarm rate in multiple sets of real target field test data.This research effectively advances the development of the field of damage parameter testing.展开更多
This paper proposes an application of compressive imaging systems to the problem of wide-area video surveillance systems. A parallel coded aperture compressive imaging system and a corresponding motion target detectio...This paper proposes an application of compressive imaging systems to the problem of wide-area video surveillance systems. A parallel coded aperture compressive imaging system and a corresponding motion target detection algorithm in video using compressive image data are developed. Coded masks with random Gaussian, Toeplitz and random binary are utilized to simulate the compressive image respectively. For compressive images, a mixture of the Gaussian distribution is applied to the compressed image field to model the background. A simple threshold test in compressive sampling image is used to declare motion objects. Foreground image retrieval from underdetermined measurement using the total variance optimization algorithm is explored. The signal-to-noise ratio (SNR) is employed to evaluate the image quality recovered from the compressive sampling signals, and receiver operation characteristic (ROC) curves are used to quantify the performance of the motion detection algorithm. Experimental results demonstrate that the low dimensional compressed imaging representation is sufficient to determine spatial motion targets. Compared with the random Gaussian and Toeplitz mask, motion detection algorithms using the random binary phase mask can yield better detection results. However using the random Gaussian and Toeplitz phase mask can achieve high resolution reconstructed images.展开更多
文摘A measurement system for the scattering characteristics of warhead fragments based on high-speed imaging systems offers advantages such as simple deployment,flexible maneuverability,and high spatiotemporal resolution,enabling the acquisition of full-process data of the fragment scattering process.However,mismatches between camera frame rates and target velocities can lead to long motion blur tails of high-speed fragment targets,resulting in low signal-to-noise ratios and rendering conventional detection algorithms ineffective in dynamic strong interference testing environments.In this study,we propose a detection framework centered on dynamic strong interference disturbance signal separation and suppression.We introduce a mixture Gaussian model constrained under a joint spatialtemporal-transform domain Dirichlet process,combined with total variation regularization to achieve disturbance signal suppression.Experimental results demonstrate that the proposed disturbance suppression method can be integrated with certain conventional motion target detection tasks,enabling adaptation to real-world data to a certain extent.Moreover,we provide a specific implementation of this process,which achieves a detection rate close to 100%with an approximate 0%false alarm rate in multiple sets of real target field test data.This research effectively advances the development of the field of damage parameter testing.
基金supported by the National Natural Science Foundation of China (61271375)BIT Foundation (2012CX04054)
文摘This paper proposes an application of compressive imaging systems to the problem of wide-area video surveillance systems. A parallel coded aperture compressive imaging system and a corresponding motion target detection algorithm in video using compressive image data are developed. Coded masks with random Gaussian, Toeplitz and random binary are utilized to simulate the compressive image respectively. For compressive images, a mixture of the Gaussian distribution is applied to the compressed image field to model the background. A simple threshold test in compressive sampling image is used to declare motion objects. Foreground image retrieval from underdetermined measurement using the total variance optimization algorithm is explored. The signal-to-noise ratio (SNR) is employed to evaluate the image quality recovered from the compressive sampling signals, and receiver operation characteristic (ROC) curves are used to quantify the performance of the motion detection algorithm. Experimental results demonstrate that the low dimensional compressed imaging representation is sufficient to determine spatial motion targets. Compared with the random Gaussian and Toeplitz mask, motion detection algorithms using the random binary phase mask can yield better detection results. However using the random Gaussian and Toeplitz phase mask can achieve high resolution reconstructed images.