期刊文献+
共找到80篇文章
< 1 2 4 >
每页显示 20 50 100
Chaos-enhanced moth-flame optimization algorithm for global optimization 被引量:3
1
作者 LI Hongwei LIU Jianyong +3 位作者 CHEN Liang BAI Jingbo SUN Yangyang LU Kai 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2019年第6期1144-1159,共16页
Moth-flame optimization(MFO)is a novel metaheuristic algorithm inspired by the characteristics of a moth’s navigation method in nature called transverse orientation.Like other metaheuristic algorithms,it is easy to f... Moth-flame optimization(MFO)is a novel metaheuristic algorithm inspired by the characteristics of a moth’s navigation method in nature called transverse orientation.Like other metaheuristic algorithms,it is easy to fall into local optimum and leads to slow convergence speed.The chaotic map is one of the best methods to improve exploration and exploitation of the metaheuristic algorithms.In the present study,we propose a chaos-enhanced MFO(CMFO)by incorporating chaos maps into the MFO algorithm to enhance its performance.The chaotic map is utilized to initialize the moths’population,handle the boundary overstepping,and tune the distance parameter.The CMFO is benchmarked on three groups of benchmark functions to find out the most efficient one.The performance of the CMFO is also verified by using two real engineering problems.The statistical results clearly demonstrate that the appropriate chaotic map(singer map)embedded in the appropriate component of MFO can significantly improve the performance of MFO. 展开更多
关键词 moth-flame optimization(MFO) chaotic map METAHEURISTIC global optimization
在线阅读 下载PDF
基于多目标飞蛾扑火算法的水光互补系统优化调度 被引量:2
2
作者 李泽宏 袁肖峰 +2 位作者 肖鹏 张太衡 覃晖 《长江科学院院报》 北大核心 2025年第6期203-209,218,共8页
水电作为灵活的可调节性能源,与流域周边的光伏电站打捆运行,形成水光互补系统,可有效发挥多能源互补优势。然而,随着电源种类的增加,调度主体的目标与约束条件也随之改变,水光互补系统优化调度问题的求解变得愈发复杂。现有水库调度研... 水电作为灵活的可调节性能源,与流域周边的光伏电站打捆运行,形成水光互补系统,可有效发挥多能源互补优势。然而,随着电源种类的增加,调度主体的目标与约束条件也随之改变,水光互补系统优化调度问题的求解变得愈发复杂。现有水库调度研究以纯水电调度为主,较少考虑新能源消纳,传统水光互补系统优化调度,一般多以发电效益目标为主,无法满足多目标综合运用的需求。为了避免飞蛾扑火优化算法(MFO)陷入局部最优,改进后的多目标飞蛾扑火算法从更新公式、飞蛾直线飞行路径的启发和火焰种群更新策略3个方面对MFO算法进行改进,为了区分这些在Pareto支配下不受彼此支配的个体,结合参考点提出了R支配,两者结合形成了一种新的性能良好的多目标进化算法R-IMOMFO。综合考虑水光互补系统发电效益和容量效益指标,构建了水光互补系统多目标优化调度模型,并采用R-IMOMFO算法对模型进行求解,针对丰、平、枯3种典型年提出了优化调度方案,结果表明建立的多目标优化模型可以较好协调水光互补系统发电效益、容量效益间的关系,可为水光互补系统多目标优化调度方案编制提供参考。 展开更多
关键词 发电调度 水光互补 飞蛾扑火算法 发电效益 容量效益 多目标优化调度
在线阅读 下载PDF
增强型飞蛾扑火优化算法在梯级水库优化调度中的应用
3
作者 侯子琪 彭慧春 李继清 《中国农村水利水电》 北大核心 2025年第7期143-152,共10页
制定合理的梯级水库调度方案对提升水电能源利用率至关重要,然而决策过程的多阶段性增加了该问题的复杂性,优化算法在求解时表现出一定程度的调度结果不稳定性、精度低甚至找不到最优解。飞蛾扑火优化算法(MFO)因其高效性而广泛应用于... 制定合理的梯级水库调度方案对提升水电能源利用率至关重要,然而决策过程的多阶段性增加了该问题的复杂性,优化算法在求解时表现出一定程度的调度结果不稳定性、精度低甚至找不到最优解。飞蛾扑火优化算法(MFO)因其高效性而广泛应用于各复杂问题,但存在易早熟和种群易趋同化等缺陷。为增强MFO算法的调度效果,提出了一种增强型飞蛾扑火优化算法(EMFO)。通过采用自适应变化的火焰数量以增强寻优空间的遍历性、融合动态共享前3名火焰位置的光源交流策略以避免落入局部极值并引入最差个体反向学习以提高收敛精度。以CEC2022测试函数以及黄河上游梯级水库中长期发电优化调度工程案例验证了所提算法的有效性。结果表明,EMFO在寻优精度以及收敛速度等方面显著优于现有算法。在工程案例方面,在考虑不同来水和起调水位条件下,EMFO较现有算法均能生成收敛精度更高、弃水量更少及表现更稳定的调度结果,且其优化后的方案发电保证率更高、破坏程度最小。以丰水年为例,其发电量分别提高了2.50%、1.56%,标准差分别下降了16.48%、42.86%,弃水量分别减少了11.375亿m^(3)和6.839亿m^(3),通过水位出力过程及刘家峡凌汛期下泄流量过程分析了调度结果的合理性,EMFO算法优化后的调度方案可以保证在满足汛期防洪需求及凌汛期刘家峡的防凌需求基础上增加整体发电量,有效提高了水资源综合利用率,为处理梯级水库优化调度提供了一种新的可行方法。 展开更多
关键词 梯级水库调度 发电优化调度 飞蛾扑火算法 种群交流 反向学习
在线阅读 下载PDF
基于广义二次相关和改进飞蛾扑火算法的变压器局部放电定位技术
4
作者 蔡谦 钱勇 +2 位作者 徐治仁 王辉 盛戈皞 《电力自动化设备》 北大核心 2025年第7期218-224,共7页
在当前变压器局部放电定位研究中,针对存在复杂噪声环境下对局部放电信号处理不足、信号时延估计误差大、由时延误差引起的定位算法失效等问题,提出了一种基于广义二次相关和改进飞蛾扑火算法的变压器局部放电定位技术。对测得的特高频... 在当前变压器局部放电定位研究中,针对存在复杂噪声环境下对局部放电信号处理不足、信号时延估计误差大、由时延误差引起的定位算法失效等问题,提出了一种基于广义二次相关和改进飞蛾扑火算法的变压器局部放电定位技术。对测得的特高频信号采用广义二次相关求得信号的时延,具有抗噪性能好的优点;对基本飞蛾扑火算法进行改进,对定位方程问题进行求解;采用改进飞蛾扑火算法和几种传统智能优化算法对基本检测函数进行求解,对比最优目标函数值、运算时间和迭代曲线,证明该改进优化算法的正确性和速度性;针对定位检测的误差,采用密度聚类算法,传感器阵列对局放多次测量并对检测到的信号进行排列组合,对得到的多个局放源定位结果基于密度进行聚类,取最大簇的几何中心位置作为最终的局放源位置。通过仿真和现场实验,验证了所提定位检测方法的有效性。 展开更多
关键词 变压器 局部放电 定位 广义二次相关 飞蛾扑火算法 密度聚类算法
在线阅读 下载PDF
考虑电压稳定的含E-SOP配电系统分布式电源双层规划 被引量:1
5
作者 颜湛 邢海军 +3 位作者 郑真 马小丽 黄程浩 郭啟振 《电力系统及其自动化学报》 北大核心 2025年第8期28-37,48,共11页
针对新能源渗透率提升带来的电压稳定风险,同时考虑柔性互联装置逐步在电力系统试点应用的背景,提出一种考虑电压稳定的含智能储能软开关(soft open point with energy storage system integration,E-SOP)配电系统分布式电源双层规划模... 针对新能源渗透率提升带来的电压稳定风险,同时考虑柔性互联装置逐步在电力系统试点应用的背景,提出一种考虑电压稳定的含智能储能软开关(soft open point with energy storage system integration,E-SOP)配电系统分布式电源双层规划模型。首先,分析电压稳定指标及E-SOP的作用机理。其次,基于拉丁超立方采样和经K-medoids算法融合的改进同步回代缩减法得到典型概率日场景。然后,建立含E-SOP接入的双层规划模型,上层模型以年综合费用最小为目标,对风电、光伏等设备进行选址定容;下层模型以电压稳定性、网络损耗、平均电压偏移等为目标,实施含E-SOP的有功无功协同优化。最后,采用改进飞蛾扑火算法进行模型求解。经IEEE 33节点配电系统算例分析,其结果表明,该模型能有效提高配电系统的经济性和实时运行的电压稳定性,验证了求解算法的优越性。 展开更多
关键词 新型配电系统 电压稳定性 智能储能软开关 双层规划 改进飞蛾扑火算法
在线阅读 下载PDF
基于光学原理的无创血糖检测方法及装置研究
6
作者 杨粟瑞 刘子嘉 +1 位作者 谢鹏飞 季忠 《中国生物医学工程学报》 北大核心 2025年第3期380-384,共5页
光学原理的血糖检测方法,可降低糖尿病患者监测血糖水平时生理及心理的痛苦,对于无创血糖检测及监测领域具有重要意义。本研究使用红光660 nm、近红外光850和940 nm的LED作为检测光源,3个光电二极管作为光电接收器,构建了无创血糖检测... 光学原理的血糖检测方法,可降低糖尿病患者监测血糖水平时生理及心理的痛苦,对于无创血糖检测及监测领域具有重要意义。本研究使用红光660 nm、近红外光850和940 nm的LED作为检测光源,3个光电二极管作为光电接收器,构建了无创血糖检测装置。通过筛选后的15个特征值构建了基于飞蛾扑火优化算法的反向传播神经网络(15-MFO-BP)血糖预测模型。利用12位志愿者(7名男性,5名女性)为期1~3 d的共计228组数据,比较了基于3个吸光度特征、仅有11个PPG特征及身体质量指数(BMI)、全体特征构建的MFO-BP血糖预测模型的性能。结果表明,MFO-BP的无创血糖预测性能最佳,其均方根误差为0.9233 mmol/L,落在克拉克网格分析中A区域的点占比为85.42%,Bland-Altman误差限为(-1.652,1.956)。实验结果证明了所构建的无创血糖预测模型及系统的可行性。 展开更多
关键词 光学原理 无创检测 血糖 飞蛾扑火优化算法 预测模型
在线阅读 下载PDF
基于改进多目标飞蛾扑火算法的干扰资源优化方法
7
作者 马铭希 陈旭祎 +2 位作者 王绍祺 刘成奎 王超 《空军工程大学学报》 北大核心 2025年第4期100-109,共10页
干扰资源优化是当前电子战任务规划的重要环节,针对多目标优化算法容易陷入局部最优及在三目标优化时的收敛问题,提出一种基于改进多目标飞蛾扑火算法(TLWP-NSMFO)的多机干扰资源优化方法。首先在多目标飞蛾扑火算法的基础上利用Tent混... 干扰资源优化是当前电子战任务规划的重要环节,针对多目标优化算法容易陷入局部最优及在三目标优化时的收敛问题,提出一种基于改进多目标飞蛾扑火算法(TLWP-NSMFO)的多机干扰资源优化方法。首先在多目标飞蛾扑火算法的基础上利用Tent混沌映射完成种群初始化,增加解的多样性和均匀性,提高算法的搜索能力;而后引入判定因子和Lévy飞行,使得算法既能够以一定的概率接受当前解,也能根据产生的扰动跳出当前解,进行重新搜索,增强了算法的搜索能力;最后利用广泛分布参考点解决多目标飞蛾扑火算法在三目标函数的收敛性问题。仿真实验表明该算法比MOEA/D算法、NSMFO算法具有更好的收敛性和种群多样性,且该方法收敛结果稳定。 展开更多
关键词 干扰资源优化 多目标优化 多目标飞蛾扑火算法 混沌映射 Lévy飞行 广泛分布参考点
在线阅读 下载PDF
基于改进飞蛾扑火算法的无人机低空突防路径规划 被引量:30
8
作者 黄鹤 吴琨 +3 位作者 王会峰 杨澜 茹锋 王珺 《中国惯性技术学报》 EI CSCD 北大核心 2021年第2期256-263,共8页
针对传统群体智能优化算法在复杂环境下求解无人机突防过程中路径搜索能力不足,易陷入局部最优、搜索时间长等问题,提出了一种基于改进的飞蛾扑火优化算法的无人机智能突防方法。首先,建立基本地形模型、威胁源模型,实现三维等效地形;然... 针对传统群体智能优化算法在复杂环境下求解无人机突防过程中路径搜索能力不足,易陷入局部最优、搜索时间长等问题,提出了一种基于改进的飞蛾扑火优化算法的无人机智能突防方法。首先,建立基本地形模型、威胁源模型,实现三维等效地形;然后,在飞蛾扑火算法中引入交叉算子和高斯变异算子,引起火焰变异,在迭代前期加快寻优速度,增强算法的全局搜索能力;最后,在算法中引入自适应权重,增大适应度较差飞蛾运动轨迹的搜索空间,改善寻优精度。实验结果表明,所提出算法可以使无人机快速地自主避开危险区域,选择最优路径,所提出算法规划的突防路径相比MFO及GWO算法分别降低了25.14 km和14.77 km,代价相比其他两种算法分别降低了3.63及10.25,提高了无人机的生存概率,较大地降低了风险成本,实现低空突防的目的。 展开更多
关键词 无人机 低空突防 飞蛾扑火算法 交叉算子 三维路径规划
在线阅读 下载PDF
引入改进飞蛾扑火的K均值交叉迭代聚类算法 被引量:15
9
作者 黄鹤 李昕芮 +3 位作者 吴琨 郭璐 王会峰 茹锋 《西安交通大学学报》 EI CAS CSCD 北大核心 2020年第9期32-39,共8页
针对现有K均值聚类(KMC)算法在选取初始聚类中心时随机性较大、全局搜索能力差、聚类精度低等问题,提出了一种引入改进飞蛾扑火的K均值交叉迭代聚类(IMFO-KMC)算法。利用最大最小距离积法初始化聚类中心,避免了KMC算法对随机初始聚类中... 针对现有K均值聚类(KMC)算法在选取初始聚类中心时随机性较大、全局搜索能力差、聚类精度低等问题,提出了一种引入改进飞蛾扑火的K均值交叉迭代聚类(IMFO-KMC)算法。利用最大最小距离积法初始化聚类中心,避免了KMC算法对随机初始聚类中心较为敏感的问题;利用样条插值预测的思想改进飞蛾扑火算法,提高了算法的收敛速度及寻优精度;以类内平均距离为适应度函数,引导插值扑火算法优化KMC迭代过程中的聚类中心,提高了聚类精度。将IMFOKMC与KMC、K-means++算法、模糊c均值聚类算法在国际标准数据集Iris、Wine和Seeds上进行了实验对比,结果表明:IMFO-KMC算法在Iris数据集上的性能提升最为明显,相比其他算法准确率提高了0.67%~4.18%,标准化互信息提高了1.5%~4.01%。 展开更多
关键词 飞蛾扑火算法 聚类中心 K均值聚类 类内平均距离 最大最小距离积法
在线阅读 下载PDF
基于MFO-LSTM的母猪发情行为识别 被引量:18
10
作者 王凯 刘春红 段青玲 《农业工程学报》 EI CAS CSCD 北大核心 2020年第14期211-219,共9页
及时准确识别母猪的发情行为可以有效增加受胎率和产仔量,对提高养殖企业的繁育水平和经济效益具有重要意义。该研究针对生猪养殖过程中母猪发情行为识别存在主观性强、智能化水平低、假警报和错误率高、识别不及时等问题,提出了一种基... 及时准确识别母猪的发情行为可以有效增加受胎率和产仔量,对提高养殖企业的繁育水平和经济效益具有重要意义。该研究针对生猪养殖过程中母猪发情行为识别存在主观性强、智能化水平低、假警报和错误率高、识别不及时等问题,提出了一种基于飞蛾扑火算法(Moth-Flame Optimization,MFO)优化长短时记忆网络(Long Short Term Memory,LSTM)的母猪发情行为识别方法。利用安装在母猪颈部的姿态传感器获得母猪姿态数据,然后使用姿态数据训练MFO-LSTM姿态分类模型,将母猪姿态分为立姿、卧姿和爬跨3类。通过对姿态分类结果进行分析,确定以爬跨行为和活动量2个特征作为发情行为识别依据,使用MFO-LSTM分类算法判断母猪是否发情。以山西省太原市杏花岭区五丰养殖场的试验数据对该方法进行验证,结果表明,该方法在以30 min为发情行为识别时间时的识别效果最好,发情行为识别的错误率为13.43%,召回率为90.63%,特效性为81.63%,与已有的母猪发情行为识别方法相比错误率降低了80%以上。该方法在保证识别准确率的情况下有效降低了错误率,可满足母猪养殖生产过程中发情行为自动识别要求。 展开更多
关键词 行为 监测 算法 母猪 发情 长短时记忆网络 飞蛾扑火算法
在线阅读 下载PDF
改进的飞蛾扑火优化算法在网络入侵检测系统中的应用 被引量:22
11
作者 徐慧 方策 +1 位作者 刘翔 叶志伟 《计算机应用》 CSCD 北大核心 2018年第11期3231-3235,3240,共6页
针对当前网络入侵检测中的数据量较大、数据维度较高的特点,将飞蛾扑火优化(MFO)算法应用于网络入侵检测的特征选择中。鉴于MFO算法收敛过快、易陷入局部最优的问题,提出一种融合粒子群优化(PSO)的二进制飞蛾扑火优化(BPMFO)算法。该算... 针对当前网络入侵检测中的数据量较大、数据维度较高的特点,将飞蛾扑火优化(MFO)算法应用于网络入侵检测的特征选择中。鉴于MFO算法收敛过快、易陷入局部最优的问题,提出一种融合粒子群优化(PSO)的二进制飞蛾扑火优化(BPMFO)算法。该算法引入MFO螺旋飞行公式,具有较强的局部搜索能力;结合了粒子群优化(PSO)算法的速度更新方法,让种群个体随着全局最优解和历史最优解的方向移动,增强算法的全局收敛性,从而避免易陷入局部最优。仿真实验以KDD CUP 99数据集为实验基础,分别采用支持向量机(SVM)、K最近邻(KNN)算法和朴素贝叶斯(NBC)3种分类器,与二进制飞蛾扑火优化(BMFO)算法、二进制粒子群优化(BPSO)算法、二进制遗传算法(BGA)、二进制灰狼优化(BGWO)算法和二进制布谷鸟搜索(BCS)算法进行了实验对比。实验结果表明,BPMFO算法应用于网络入侵检测的特征选择时,在算法精度、运行效率、稳定性、收敛速度以及跳出局部最优的综合性能上具有明显优势。 展开更多
关键词 网络入侵检测 特征选择 飞蛾扑火优化算法 粒子群优化算法 融合
在线阅读 下载PDF
基于多目标飞蛾算法的电力系统无功优化研究 被引量:13
12
作者 李伟琨 阙波 +1 位作者 王万良 倪立洲 《计算机科学》 CSCD 北大核心 2017年第B11期503-509,共7页
鉴于电力需求的日益增长与传统无功优化方法的桎梏,如何更加合理有效地解决电力系统的无功优化问题逐渐成为了研究的热点。提出一种多目标飞蛾扑火算法来解决电力系统多目标无功优化的问题,算法引入固定大小的外部储存机制、自适应的网... 鉴于电力需求的日益增长与传统无功优化方法的桎梏,如何更加合理有效地解决电力系统的无功优化问题逐渐成为了研究的热点。提出一种多目标飞蛾扑火算法来解决电力系统多目标无功优化的问题,算法引入固定大小的外部储存机制、自适应的网格和筛选机制来有效存储和提升无功优化问题的帕累托最优解集,算法采用CEC2009标准多目标测试函数来进行仿真实验,并与两种经典算法进行性能的对比分析。此外,在电力系统IEEE 30节点上将该算法与MOPSO,NGSGA-Ⅱ算法的求解结果进行比较分析的结果表明,多目标飞蛾算法具有良好的性能,并在解决电力系统多目标无功优化问题上具有良好的潜力。 展开更多
关键词 多目标优化 进化算法 无功优化 飞蛾扑火 电力系统
在线阅读 下载PDF
飞蛾纵横交叉混沌捕焰优化算法 被引量:11
13
作者 吴伟民 李泽熊 +2 位作者 林志毅 吴汪洋 方典禹 《计算机工程与应用》 CSCD 北大核心 2018年第3期136-141,共6页
针对基本飞蛾捕焰优化(MFO)算法收敛速度慢和易陷入局部最优的缺陷,提出一种飞蛾纵横交叉混沌捕焰(CCMFO)算法。为飞蛾捕焰引入纵横交叉机制和混沌算子,通过横向全方位交叉寻优减少搜索盲点,纵向维交叉开发和混沌映射增强跳出局部最优... 针对基本飞蛾捕焰优化(MFO)算法收敛速度慢和易陷入局部最优的缺陷,提出一种飞蛾纵横交叉混沌捕焰(CCMFO)算法。为飞蛾捕焰引入纵横交叉机制和混沌算子,通过横向全方位交叉寻优减少搜索盲点,纵向维交叉开发和混沌映射增强跳出局部最优的能力,火焰信息在种群中纵横交叉呈链式反应传播,加快收敛速度和避免算法早熟。通过仿真对比实验,证明了该算法具有较好的收敛速度、求解精度和稳定性。 展开更多
关键词 飞蛾捕焰优化算法 纵横交叉机制 混沌算子 元启发式算法
在线阅读 下载PDF
动态自适应特征融合的MFOPA跟踪器 被引量:8
14
作者 黄鹤 李文龙 +3 位作者 吴琨 杨澜 王会峰 王萍 《电子学报》 EI CAS CSCD 北大核心 2023年第5期1350-1358,共9页
本文针对无人机航拍跟踪算法实时性差且易发生跟踪漂移的问题,提出了一种动态自适应特征融合的改进飞蛾扑火优化跟踪器.本文设计了一种基于趋光-聚集度飞蛾扑火优化算法的目标跟踪框架,采用高斯分布和趋光-聚集度改进飞蛾扑火算法的初... 本文针对无人机航拍跟踪算法实时性差且易发生跟踪漂移的问题,提出了一种动态自适应特征融合的改进飞蛾扑火优化跟踪器.本文设计了一种基于趋光-聚集度飞蛾扑火优化算法的目标跟踪框架,采用高斯分布和趋光-聚集度改进飞蛾扑火算法的初始化和迭代方式,将改进后的飞蛾扑火算法作为搜索策略优化目标跟踪,提升了跟踪效率;同时,在趋光-聚集度飞蛾扑火优化算法跟踪框架的基础上,本文定义了一种自适应多特征融合的模板和选择了一种动态更新的模板策略,充分利用颜色名特征、融合方向梯度直方图特征及灰度特征各自的优势,消除复杂环境中无人机跟踪受到的干扰,并解决在遮挡等情况下学习到无效的背景信息而导致特征模板退化的问题.实验结果表明,本文提出的算法在复杂环境场景下能够适应不同情况下环境的变化,平均跟踪精度达到87%,保持稳定跟踪,跟踪速度为31.6帧/s,满足实时性要求,大幅提升了跟踪器的精度和鲁棒性. 展开更多
关键词 目标跟踪 群体智能算法 改进飞蛾扑火算法 特征融合 余弦相似度 高斯初始化
在线阅读 下载PDF
Tsne降维可视化分析及飞蛾火焰优化ELM算法在电力负荷预测中应用 被引量:58
15
作者 张淑清 段晓宁 +4 位作者 张立国 姜安琦 姚玉永 刘勇 穆勇 《中国电机工程学报》 EI CSCD 北大核心 2021年第9期3120-3129,共10页
电力系统的稳定运行具有负荷平衡的强约束性,准确的电力负荷预测在保证电力系统规划与可靠、经济运行方面具有十分重要的意义,影响着电力系统的诸多决策,如经济调度、自动发电控制、安全评估、维护调度和能源商业化等。该文针对电力负... 电力系统的稳定运行具有负荷平衡的强约束性,准确的电力负荷预测在保证电力系统规划与可靠、经济运行方面具有十分重要的意义,影响着电力系统的诸多决策,如经济调度、自动发电控制、安全评估、维护调度和能源商业化等。该文针对电力负荷预测的多种气象因素影响,提出一种基于Tsne降维可视化分析及飞蛾火焰优化ELM算法(MFOELM)的电力负荷预测新方法。针对影响电力负荷预测的高维气象数据,采用改进的SNE降维可视化分析方法Tsne,解决了数据拥挤造成可视化效果不佳且数据结构易发生改变的问题,通过与Kpca、SNE降维方法的对比实验,证明了Tsne可以更好地将高维气象数据向低维空间映射,较高地保持高维空间中的数据结构并改善数据可视化效果;针对ELM负荷预测模型的局限,利用MFO在求解具有约束和未知搜索空间的复杂问题时具有的优越性对ELM优化,更好地解决了ELM权值输出不稳定,易陷入局部最小值等问题。通过对SAELM、PSOELM、MFOELM三种预测算法进行寻优实验,结果表明MFO不但具有更快的求解速度,而且提高了ELM的预测精度。通过对国际公开的美国日气象数据降维,协同负荷数据进行预测进行对比实验,证明了该文方法的有效性和优越性。该文方法在唐山实际电网负荷预测中应用,为制定合理的电网运行方式提供依据。 展开更多
关键词 短期电力负荷预测 T分布随机邻接嵌入(Tsne) 降维可视化分析 飞蛾火焰优化ELM算法(MFOELM)
在线阅读 下载PDF
基于Lévy飞行的飞蛾扑火优化算法 被引量:18
16
作者 李志明 莫愿斌 《计算机工程与设计》 北大核心 2017年第3期807-813,共7页
由于飞蛾扑火优化(MFO)算法收敛速度和计算精度还有待提高,提出一种改进的基于Lévy飞行轨迹的飞蛾扑火优化(LMFO)算法。增强局部搜索能力,大幅度提升收敛速度和求解精度。对12个无约束基准函数进行实验测试,测试结果表明,改进后的L... 由于飞蛾扑火优化(MFO)算法收敛速度和计算精度还有待提高,提出一种改进的基于Lévy飞行轨迹的飞蛾扑火优化(LMFO)算法。增强局部搜索能力,大幅度提升收敛速度和求解精度。对12个无约束基准函数进行实验测试,测试结果表明,改进后的LMFO是有效可行的。 展开更多
关键词 最优化 横向定位 飞蛾扑火优化 Lévy飞行 精度
在线阅读 下载PDF
改进飞蛾捕焰算法在网络流量预测中的应用 被引量:6
17
作者 吴伟民 李泽熊 +1 位作者 林志毅 吴汪洋 《计算机工程》 CAS CSCD 北大核心 2017年第10期153-159,166,共8页
传统BP神经网络对网络流量时间序列预测精度低和泛化能力弱。为此,提出一种新的优化BP神经网络的方法。通过小波包分解对网络流量进行多频段序列分解,并采用飞蛾纵横交叉混沌捕焰算法优化的神经网络,对各分解后的子序列进行预测,叠加各... 传统BP神经网络对网络流量时间序列预测精度低和泛化能力弱。为此,提出一种新的优化BP神经网络的方法。通过小波包分解对网络流量进行多频段序列分解,并采用飞蛾纵横交叉混沌捕焰算法优化的神经网络,对各分解后的子序列进行预测,叠加各子序列的预测值,重构获取实际预测结果。仿真结果表明,与传统BP神经网络预测方法相比,该方法能捕获网络流量的变化规律,具有较好的预测精度、稳定性和泛化能力。 展开更多
关键词 飞蛾捕焰算法 网络流量预测 小波包分解 神经网络 预测计算
在线阅读 下载PDF
基于改进Apriori关联分析及MFOLSTM算法的短期负荷预测 被引量:24
18
作者 王凌云 林跃涵 +2 位作者 童华敏 李黄强 张涛 《电力系统保护与控制》 CSCD 北大核心 2021年第20期74-81,共8页
电力负荷预测结果的准确性对电力系统安全稳定运行具有重要意义。针对多气象因素影响下的短期负荷预测任务,提出改进Apriori关联度分析及飞蛾火焰优化的长短时记忆神经网络算法的电力负荷短期预测新方法。首先,提出改进Apriori算法分析... 电力负荷预测结果的准确性对电力系统安全稳定运行具有重要意义。针对多气象因素影响下的短期负荷预测任务,提出改进Apriori关联度分析及飞蛾火焰优化的长短时记忆神经网络算法的电力负荷短期预测新方法。首先,提出改进Apriori算法分析气象因素与负荷之间的关联程度。依据分析结果除去非必要气象影响因素,并在此基础上引入人体舒适度评价指标。其次,将降维后气象数据结合地区负荷数据作为模型输入。最后,基于长短时记忆神经网络进行短期负荷预测建模,并结合飞蛾火焰优化算法的全局寻优能力来优化模型。通过对某地区负荷数据协同气象数据进行对比预测试验,测试结果表明该负荷预测模型能有效提升地区电网短期负荷预测性能。 展开更多
关键词 短期负荷预测 Apriori关联分析 飞蛾火焰算法 长短时记忆神经网络
在线阅读 下载PDF
新型飞蛾火焰优化算法的研究 被引量:11
19
作者 田鸿 陈国彬 刘超 《计算机工程与应用》 CSCD 北大核心 2019年第16期138-143,共6页
飞蛾火焰优化算法(Moth-Flame Optimization,MFO)是一种自然激励且易于实现的全局优化算法,在许多实际优化任务中表现出良好的性能。然而,MFO算法存在早熟收敛和容易陷入局部最优解的问题,针对这些不足,提出了一种Kent混沌动态惯性权值... 飞蛾火焰优化算法(Moth-Flame Optimization,MFO)是一种自然激励且易于实现的全局优化算法,在许多实际优化任务中表现出良好的性能。然而,MFO算法存在早熟收敛和容易陷入局部最优解的问题,针对这些不足,提出了一种Kent混沌动态惯性权值的改善飞蛾火焰优化算法(Ameliorative MFO,AMFO)。在AMFO算法中,引入Kent混沌映射搜索策略帮助当前最优解跳出局部最优;采用基于适应度值和迭代次数的动态惯性权值策略来平衡算法的开发和探索能力,以进一步提升MFO算法性能。在8个经典benchmark函数上验证AMFO算法的搜索精度和性能,并将其结果与标准飞蛾火焰优化算法、粒子群算法和差分进化算法进行比较,仿真结果表明AMFO算法具有较好的搜索性能。 展开更多
关键词 群智能 飞蛾火焰优化算法 Kent混沌 动态惯性权值 数值函数
在线阅读 下载PDF
基于核极限学习机自编码器的转盘轴承寿命状态识别 被引量:6
20
作者 潘裕斌 王华 +1 位作者 陈捷 洪荣晶 《浙江大学学报(工学版)》 EI CAS CSCD 北大核心 2022年第9期1856-1866,共11页
针对低速重载转盘轴承运行工况恶劣、故障特征微弱的特点,提出基于飞蛾扑火算法优化多层核极限学习机自编码器(MFO-MLKELM-AE)的转盘轴承寿命状态识别方法.该方法从振动信号的时域和时频域中提取出多个能够表征转盘轴承运行状态的特征向... 针对低速重载转盘轴承运行工况恶劣、故障特征微弱的特点,提出基于飞蛾扑火算法优化多层核极限学习机自编码器(MFO-MLKELM-AE)的转盘轴承寿命状态识别方法.该方法从振动信号的时域和时频域中提取出多个能够表征转盘轴承运行状态的特征向量,并将其组成高维特征集.采用堆叠多层核极限学习机自编码器(MLKELM-AE),从高维特征集中提取最能反映转盘轴承的寿命状态信息,输入核极限学习机(KELM)模型进行寿命状态识别.在MLKELM-AE学习训练中,采用新的飞蛾扑火算法(MFO)优化惩罚系数和核参数,提高MLKELM-AE的特征识别能力.转盘轴承加速寿命实验表明,MLKELM-AE比多层极限学习机自编码器(MLELMAE)、单层极限学习机(ELM)、KELM的识别精度高,多传感器、多领域特征能够全面反映转盘轴承的寿命状态. 展开更多
关键词 低速重载转盘轴承 多层核极限学习机自编码器(MLKELM-AE) 飞蛾扑火算法(MFO) 寿命状态识别 多领域特征
在线阅读 下载PDF
上一页 1 2 4 下一页 到第
使用帮助 返回顶部