A redox-active monolayer on an optically transparent electrode constitutes a typical platform for spectroelectrochemical sensing.The necessity for its sophistication arises from the availability of multi-dimensional s...A redox-active monolayer on an optically transparent electrode constitutes a typical platform for spectroelectrochemical sensing.The necessity for its sophistication arises from the availability of multi-dimensional sensing signals.Simultaneous monitoring of the redox current and color change synchronized with the oxidation state change significantly enhances sen-sitivity and selectivity.This study aimed to elucidate the modification of an indium tin oxide(ITO)electrode with a viologen monolayer with an ordered orientation.Novel methods were developed to immobilize a viologen molecule bearing a car-boxyl group to form assembled monolayers through a condensation reaction using 1-ethyl-3-(3-dimethylaminopropyl)-car-bodiimide with N-hydroxy-succinimide(EDC/NHS).In the two methods of immobilization,one utilizes a two-step process to firstly form an aromatic siloxane base layer and subsequently attach the viologen derivative through an amide linkage by post-amidation.The other employs a direct ester linkage between the hydroxyl groups of the ITO surface and the car-boxyl group of the viologen derivative.The latter method was also applied to immobilize a ferrocenyl group at a very short distance from the ITO surface.Potential-modulated UV-visible transmission absorption spectral measurement techniques with oblique incidence of plane-polarized light were employed to determine the orientation of the longitudinal axis of the reduced form of the viologen.The frequency dependence data of the potential-modulated transmission absorption signals were utilized to analyze the electron transfer kinetics.The performance of the two viologen-modified electrodes was com-pared to that of an ITO modified by post-amidation to the most commonly used base layer prepared with 3-aminopropyl triethoxysilane.展开更多
The spin caloritronic properties of the Janus VSTe monolayer were investigated using density functional theory(DFT)and the non-equilibrium Green’s function(NEGF)method,implemented in the Atomistix Toolkit(ATK)package...The spin caloritronic properties of the Janus VSTe monolayer were investigated using density functional theory(DFT)and the non-equilibrium Green’s function(NEGF)method,implemented in the Atomistix Toolkit(ATK)package.Our study revealed significant spin-splitting within the Janus VSTe monolayer,which induced spin currents under a temperature gradient across the device.By applying a 1%tensile strain,the Janus VSTe monolayer exhibited a perfect thermal spin filtering effect(SFE),with the spin-up current nearly suppressed to zero.Both the unstrained and strained Janus VSTe monolayers demonstrated excellent spin caloritronic properties,with spin figures of merit of 10.915 and 8.432 at an average temperature of 100 K,respectively.Notably,these properties were found to be sensitive to temperature,performing optimally at lower temperatures.These results suggest a promising avenue for designing spin caloritronic devices aimed at efficient waste heat recovery.展开更多
l'-cysteaminecarbonyl-1-glutathionecarbonyl-ferrocene (Fc-GSH) was synthesized from ferrocene dicarboxylic acid and reduced glutathione (GSH) with 4 steps. IR and 1^H-NMR were used to characterize the products. T...l'-cysteaminecarbonyl-1-glutathionecarbonyl-ferrocene (Fc-GSH) was synthesized from ferrocene dicarboxylic acid and reduced glutathione (GSH) with 4 steps. IR and 1^H-NMR were used to characterize the products. Then Fc-GSH was immobilized on the surface of gold electrode. Cyclic votammetry (CV) was adopted to investigate the electrochemical properties of this Fc-GSH modified electrode in the absence and presence of Cd^2+ aqueous solutions. The peak oxidation potential (Ea) and reduction potential (Ec) of Fc-GSH modified electrode were observed at Ea= 0.74 V and Ec= 0.64 V (vs Ag/AgCl) before the accumulation of Cd^2+. This redox process is a monoelectron chemical reaction. The anodic shift is about 80 mV in the presence of 20 nmol/L of Cd^2+ aqueous solution. Moreover, this shift is in proportion to the concentration of Cd^2+ when the concentration of Cd^2+ is lower than 20 nmol/L. So the modified electrode can be used as probes to detect cadmium ions with the limit of 0.1 nmol/L by cyclic voltammetry.展开更多
Calcium carbonate,which is widely employed as a filler added into the polymer matrix,has large numbers of applications owing to the excellent properties such as low cost,non-toxicity,high natural reserves and biocompa...Calcium carbonate,which is widely employed as a filler added into the polymer matrix,has large numbers of applications owing to the excellent properties such as low cost,non-toxicity,high natural reserves and biocompatibility.Nevertheless,in order to obtain the good filling effect,calcium carbonate needs to be surface modified by organic molecules so as to enhance the dispersion and compatibility within the composites.This review paper systematically introduces the theory,methods,and applications progress of calcium carbonate with surface modification.Additionally,the key factors that affect the properties of the composites as well as the current difficulties and challenges are highlighted.The current research progress and potential application prospects of calcium carbonate in the fields of plastics,rubber,paper,medicine and environmental protection are discussed as well.Generally,this review can provide valuable reference for the modification and comprehensive utilization of calcium carbonate.展开更多
The paper discussed the limitation of ’Dominant wavelengt h theory’. The theoretical model and nonhomogeneous differential equation of fold and deformation of a monolayer sandwiched-in limited and different thickn e...The paper discussed the limitation of ’Dominant wavelengt h theory’. The theoretical model and nonhomogeneous differential equation of fold and deformation of a monolayer sandwiched-in limited and different thickn ess terranes are proposed by using mechanics of elasticity. In addition, the ′D ominant wavelength theory’ is proved by the experimental folding in elastic ma terials. The folds of a monolayer sandwiched-in limited and different thickness terranes are studied inside and are explored in the field.展开更多
LRS, XRD, UV-DRS and TPR techiques have been used to characterize supported tungsten oxide catalysts. Experimental results show that WO<sub>3</sub> is highly dispersed on γ-Al<sub>2</sub>O<...LRS, XRD, UV-DRS and TPR techiques have been used to characterize supported tungsten oxide catalysts. Experimental results show that WO<sub>3</sub> is highly dispersed on γ-Al<sub>2</sub>O<sub>3</sub>, TiO<sub>2</sub>, SnO<sub>2</sub> and ZrO<sub>2</sub> until a complete monolayer coverage is achieved. However, WO<sub>3</sub> is poorly dispersed on SiO<sub>2</sub> Raman spectroscopy is a very powerful technique for distinguishing highly dispersed and crystalline WO<sub>3</sub> on the surface. For the samples with monolayer coverage of WO<sub>3</sub>, the Raman shift of surface W-O species varies with the support. The support stabilizes surface W-O species and substantially suppresses its reduction and changes the reduction process as well. The coordination state of the W-O species on the support surface depends on the loading and the crystalline structure of the support. The Raman shift and T<sub>m</sub> value of the TPR peak of the surface W-O species are correlated with the interaction between WO<sub>3</sub> and the support.展开更多
基金supports by the Grant-in-Aid of Scientific Research of Challenging Research(Exploratory)(JP23K17738)to TS from MEXT of Japanthe 41st grant of research from Nippon Sheet Glass Foundation for Materials Science and Engineering to TS.
文摘A redox-active monolayer on an optically transparent electrode constitutes a typical platform for spectroelectrochemical sensing.The necessity for its sophistication arises from the availability of multi-dimensional sensing signals.Simultaneous monitoring of the redox current and color change synchronized with the oxidation state change significantly enhances sen-sitivity and selectivity.This study aimed to elucidate the modification of an indium tin oxide(ITO)electrode with a viologen monolayer with an ordered orientation.Novel methods were developed to immobilize a viologen molecule bearing a car-boxyl group to form assembled monolayers through a condensation reaction using 1-ethyl-3-(3-dimethylaminopropyl)-car-bodiimide with N-hydroxy-succinimide(EDC/NHS).In the two methods of immobilization,one utilizes a two-step process to firstly form an aromatic siloxane base layer and subsequently attach the viologen derivative through an amide linkage by post-amidation.The other employs a direct ester linkage between the hydroxyl groups of the ITO surface and the car-boxyl group of the viologen derivative.The latter method was also applied to immobilize a ferrocenyl group at a very short distance from the ITO surface.Potential-modulated UV-visible transmission absorption spectral measurement techniques with oblique incidence of plane-polarized light were employed to determine the orientation of the longitudinal axis of the reduced form of the viologen.The frequency dependence data of the potential-modulated transmission absorption signals were utilized to analyze the electron transfer kinetics.The performance of the two viologen-modified electrodes was com-pared to that of an ITO modified by post-amidation to the most commonly used base layer prepared with 3-aminopropyl triethoxysilane.
基金Project(2022JJ30049)supported by the Natural Science Foundation of Hunan Province,China。
文摘The spin caloritronic properties of the Janus VSTe monolayer were investigated using density functional theory(DFT)and the non-equilibrium Green’s function(NEGF)method,implemented in the Atomistix Toolkit(ATK)package.Our study revealed significant spin-splitting within the Janus VSTe monolayer,which induced spin currents under a temperature gradient across the device.By applying a 1%tensile strain,the Janus VSTe monolayer exhibited a perfect thermal spin filtering effect(SFE),with the spin-up current nearly suppressed to zero.Both the unstrained and strained Janus VSTe monolayers demonstrated excellent spin caloritronic properties,with spin figures of merit of 10.915 and 8.432 at an average temperature of 100 K,respectively.Notably,these properties were found to be sensitive to temperature,performing optimally at lower temperatures.These results suggest a promising avenue for designing spin caloritronic devices aimed at efficient waste heat recovery.
基金Project(20676153) supported by the National Natural Science Foundation of China
文摘l'-cysteaminecarbonyl-1-glutathionecarbonyl-ferrocene (Fc-GSH) was synthesized from ferrocene dicarboxylic acid and reduced glutathione (GSH) with 4 steps. IR and 1^H-NMR were used to characterize the products. Then Fc-GSH was immobilized on the surface of gold electrode. Cyclic votammetry (CV) was adopted to investigate the electrochemical properties of this Fc-GSH modified electrode in the absence and presence of Cd^2+ aqueous solutions. The peak oxidation potential (Ea) and reduction potential (Ec) of Fc-GSH modified electrode were observed at Ea= 0.74 V and Ec= 0.64 V (vs Ag/AgCl) before the accumulation of Cd^2+. This redox process is a monoelectron chemical reaction. The anodic shift is about 80 mV in the presence of 20 nmol/L of Cd^2+ aqueous solution. Moreover, this shift is in proportion to the concentration of Cd^2+ when the concentration of Cd^2+ is lower than 20 nmol/L. So the modified electrode can be used as probes to detect cadmium ions with the limit of 0.1 nmol/L by cyclic voltammetry.
基金Project(AA18242008)supported by the Guangxi Science&Technology Major Project,ChinaProject(HZXYKFKT201904)supported by the Opening Project of Guangxi Key Laboratory of Calcium Carbonate Resources Comprehensive Utilization,China。
文摘Calcium carbonate,which is widely employed as a filler added into the polymer matrix,has large numbers of applications owing to the excellent properties such as low cost,non-toxicity,high natural reserves and biocompatibility.Nevertheless,in order to obtain the good filling effect,calcium carbonate needs to be surface modified by organic molecules so as to enhance the dispersion and compatibility within the composites.This review paper systematically introduces the theory,methods,and applications progress of calcium carbonate with surface modification.Additionally,the key factors that affect the properties of the composites as well as the current difficulties and challenges are highlighted.The current research progress and potential application prospects of calcium carbonate in the fields of plastics,rubber,paper,medicine and environmental protection are discussed as well.Generally,this review can provide valuable reference for the modification and comprehensive utilization of calcium carbonate.
文摘The paper discussed the limitation of ’Dominant wavelengt h theory’. The theoretical model and nonhomogeneous differential equation of fold and deformation of a monolayer sandwiched-in limited and different thickn ess terranes are proposed by using mechanics of elasticity. In addition, the ′D ominant wavelength theory’ is proved by the experimental folding in elastic ma terials. The folds of a monolayer sandwiched-in limited and different thickness terranes are studied inside and are explored in the field.
基金Project supported by National sience Foundation of China
文摘LRS, XRD, UV-DRS and TPR techiques have been used to characterize supported tungsten oxide catalysts. Experimental results show that WO<sub>3</sub> is highly dispersed on γ-Al<sub>2</sub>O<sub>3</sub>, TiO<sub>2</sub>, SnO<sub>2</sub> and ZrO<sub>2</sub> until a complete monolayer coverage is achieved. However, WO<sub>3</sub> is poorly dispersed on SiO<sub>2</sub> Raman spectroscopy is a very powerful technique for distinguishing highly dispersed and crystalline WO<sub>3</sub> on the surface. For the samples with monolayer coverage of WO<sub>3</sub>, the Raman shift of surface W-O species varies with the support. The support stabilizes surface W-O species and substantially suppresses its reduction and changes the reduction process as well. The coordination state of the W-O species on the support surface depends on the loading and the crystalline structure of the support. The Raman shift and T<sub>m</sub> value of the TPR peak of the surface W-O species are correlated with the interaction between WO<sub>3</sub> and the support.