To protect the copyright of the image as well as the image quality, a kind of image zero-watermark method based on the Krawtchouk moment invariants and timestamp is proposed. A method is used to protect the image, in ...To protect the copyright of the image as well as the image quality, a kind of image zero-watermark method based on the Krawtchouk moment invariants and timestamp is proposed. A method is used to protect the image, in which features are drawn out from the image as the watermarking. The main steps of the method are presented. Firstly, some low-order moment invariants of the image are extracted. Secondly, the moment invariants and the key are registered to a fair third party to gain the timestamp. Finally, the timestamp can be used to prove who the real owner is. The processing method is simple, only with a few low-order moment invariants to be computed. Experimental results are obtained and compared with those of the method based on geometric moment invariants. Results show that the scheme can well withstand such geometrical attacks as rotating, scaling, cropping, combined attack, translating, removing lines, filtering, and JPEG lossy compression.展开更多
Training neural network to recognize targets needs a lot of samples.People usually get these samples in a non-systematic way,which can miss or overemphasize some target information.To improve this situation,a new meth...Training neural network to recognize targets needs a lot of samples.People usually get these samples in a non-systematic way,which can miss or overemphasize some target information.To improve this situation,a new method based on virtual model and invariant moments was proposed to generate training samples.The method was composed of the following steps:use computer and simulation software to build target object's virtual model and then simulate the environment,light condition,camera parameter,etc.;rotate the model by spin and nutation of inclination to get the image sequence by virtual camera;preprocess each image and transfer them into binary image;calculate the invariant moments for each image and get a vectors' sequence.The vectors' sequence which was proved to be complete became the training samples together with the target outputs.The simulated results showed that the proposed method could be used to recognize the real targets and improve the accuracy of target recognition effectively when the sampling interval was short enough and the circumstance simulation was close enough.展开更多
文摘To protect the copyright of the image as well as the image quality, a kind of image zero-watermark method based on the Krawtchouk moment invariants and timestamp is proposed. A method is used to protect the image, in which features are drawn out from the image as the watermarking. The main steps of the method are presented. Firstly, some low-order moment invariants of the image are extracted. Secondly, the moment invariants and the key are registered to a fair third party to gain the timestamp. Finally, the timestamp can be used to prove who the real owner is. The processing method is simple, only with a few low-order moment invariants to be computed. Experimental results are obtained and compared with those of the method based on geometric moment invariants. Results show that the scheme can well withstand such geometrical attacks as rotating, scaling, cropping, combined attack, translating, removing lines, filtering, and JPEG lossy compression.
基金Supported by the Ministerial Level Research Foundation(404040401)
文摘Training neural network to recognize targets needs a lot of samples.People usually get these samples in a non-systematic way,which can miss or overemphasize some target information.To improve this situation,a new method based on virtual model and invariant moments was proposed to generate training samples.The method was composed of the following steps:use computer and simulation software to build target object's virtual model and then simulate the environment,light condition,camera parameter,etc.;rotate the model by spin and nutation of inclination to get the image sequence by virtual camera;preprocess each image and transfer them into binary image;calculate the invariant moments for each image and get a vectors' sequence.The vectors' sequence which was proved to be complete became the training samples together with the target outputs.The simulated results showed that the proposed method could be used to recognize the real targets and improve the accuracy of target recognition effectively when the sampling interval was short enough and the circumstance simulation was close enough.