Recently, two-dimensional monolayer molybdenum disulfide(MoS_2), a transition metal dichalcogenide, has received considerable attention due to its direct bandgap, which does not exist in its bulk form, enabling applic...Recently, two-dimensional monolayer molybdenum disulfide(MoS_2), a transition metal dichalcogenide, has received considerable attention due to its direct bandgap, which does not exist in its bulk form, enabling applications in optoelectronics and also thanks to its enhanced catalytic activity which allows it to be used for energy harvesting. However,growth of controllable and high-quality monolayers is still a matter of research and the parameters determining growth mechanism are not completely clear. In this work, chemical vapor deposition is utilized to grow monolayer MoS_2 flakes while deposition duration and temperature effect have been systematically varied to develop a better understanding of the MoS_2 film formation and the influence of these parameters on the quality of the monolayer flakes. Different from previous studies, SEM results show that single-layer MoS_2 flakes do not necessarily grow flat on the surface, but rather they can stay erect and inclined at different angles on the surface, indicating possible gas-phase reactions allowing for monolayer film formation. We have also revealed that process duration influences the amount of MoO_3/MoO_2 within the film network. The homogeneity and the number of layers depend on the change in the desorption–adsorption of radicals together with sulfurization rates, and, inasmuch, a careful optimization of parameters is crucial. Therefore, distinct from the general trend of MoS_2 monolayer formation, our films are rough and heterogeneous with monolayer MoS_2 nanowalls. Despite this roughness and the heterogeneity, we observe a strong photoluminescence located around 675 nm.展开更多
MoS2 is a promising anode material for sodium ion batteries owing to its two-dimensional layered structure and high specific capacity. But it still exhibits a poor cycle stability and limited rate capability for Na+ ...MoS2 is a promising anode material for sodium ion batteries owing to its two-dimensional layered structure and high specific capacity. But it still exhibits a poor cycle stability and limited rate capability for Na+ storage because of its poor electrical conductivity and structural instability. In this work, MoS2/graphite composite is fabricated by mechanically delaminated and restacked MoS2 and graphite to form two-dimensional composite layers. The graphite sheets will improve electrical conductivity and prevent the aggregation as well as structure collapse of the MoS2 layers during charge-discharge process. The MoS2/graphite composite exhibits excellent Na+ storage properties. It delivers a high discharge specific capacity of 358.2 mAh/g at a current density of 100 mA]g in the first discharge process and with capacity retention of 68.1% after 800 cycles (retains 244 mAh/g). The average discharge specific capacities retain 250.9 and 225.4 mAh/g corresponding to the current densities of 100 and 1000 mA]g, showing excellent rate capability. The improved electrochemical performance is attributed to the improved electrical conductivity and structural stability after composition of graphite sheets. The study demonstrates a new research strategy for improving sodium ion storage properties of Mo52.展开更多
Due to their unique characteristics,two-dimensional(2D)materials have drawn great attention as promising candidates for the next generation of integrated circuits,which generate a calculation unit with a new working m...Due to their unique characteristics,two-dimensional(2D)materials have drawn great attention as promising candidates for the next generation of integrated circuits,which generate a calculation unit with a new working mechanism,called a logic transistor.To figure out the application prospects of logic transistors,exploring the temperature dependence of logic characteristics is important.In this work,we explore the temperature effect on the electrical characteristic of a logic transistor,finding that changes in temperature cause transformation in the calculation:logical output converts from‘AND’at 10 K to‘OR’at 250 K.The transformation phenomenon of temperature regulation in logical output is caused by energy band which decreases with increasing temperature.In the experiment,the indirect band gap of MoS2 shows an obvious decrease from 1.581 eV to 1.535 eV as the temperature increases from 10 K to 250 K.The change of threshold voltage with temperature is consistent with the energy band,which confirms the theoretical analysis.Therefore,as a promising material for future integrated circuits,the demonstrated characteristic of 2D transistors suggests possible application for future functional devices.展开更多
High performance supercapacitors coupled with mechanical flexibility are needed to drive flexible and wearable electronics that have anesthetic appeal and multi-functionality. Two dimensional(2D) materials have attr...High performance supercapacitors coupled with mechanical flexibility are needed to drive flexible and wearable electronics that have anesthetic appeal and multi-functionality. Two dimensional(2D) materials have attracted attention owing to their unique physicochemical and electrochemical properties, in addition to their ability to form hetero-structures with other nanomaterials further improving mechanical and electrochemical properties. After a brief introduction of supercapacitors and 2D materials, recent progress on flexible supercapacitors using 2D materials is reviewed. Here we provide insights into the structure–property relationships of flexible electrodes, in particular free-standing films. We also present our perspectives on the development of flexible supercapacitors.展开更多
基金supported by Anadolu University BAP 1407F335 and BAP 1505F271 Projects
文摘Recently, two-dimensional monolayer molybdenum disulfide(MoS_2), a transition metal dichalcogenide, has received considerable attention due to its direct bandgap, which does not exist in its bulk form, enabling applications in optoelectronics and also thanks to its enhanced catalytic activity which allows it to be used for energy harvesting. However,growth of controllable and high-quality monolayers is still a matter of research and the parameters determining growth mechanism are not completely clear. In this work, chemical vapor deposition is utilized to grow monolayer MoS_2 flakes while deposition duration and temperature effect have been systematically varied to develop a better understanding of the MoS_2 film formation and the influence of these parameters on the quality of the monolayer flakes. Different from previous studies, SEM results show that single-layer MoS_2 flakes do not necessarily grow flat on the surface, but rather they can stay erect and inclined at different angles on the surface, indicating possible gas-phase reactions allowing for monolayer film formation. We have also revealed that process duration influences the amount of MoO_3/MoO_2 within the film network. The homogeneity and the number of layers depend on the change in the desorption–adsorption of radicals together with sulfurization rates, and, inasmuch, a careful optimization of parameters is crucial. Therefore, distinct from the general trend of MoS_2 monolayer formation, our films are rough and heterogeneous with monolayer MoS_2 nanowalls. Despite this roughness and the heterogeneity, we observe a strong photoluminescence located around 675 nm.
基金supported by the National Natural Science Foundation of China(no.21403099)the Natural Science Funds for Distinguished Young Scholars of Gansu Province(no.1606RJDA320)
文摘MoS2 is a promising anode material for sodium ion batteries owing to its two-dimensional layered structure and high specific capacity. But it still exhibits a poor cycle stability and limited rate capability for Na+ storage because of its poor electrical conductivity and structural instability. In this work, MoS2/graphite composite is fabricated by mechanically delaminated and restacked MoS2 and graphite to form two-dimensional composite layers. The graphite sheets will improve electrical conductivity and prevent the aggregation as well as structure collapse of the MoS2 layers during charge-discharge process. The MoS2/graphite composite exhibits excellent Na+ storage properties. It delivers a high discharge specific capacity of 358.2 mAh/g at a current density of 100 mA]g in the first discharge process and with capacity retention of 68.1% after 800 cycles (retains 244 mAh/g). The average discharge specific capacities retain 250.9 and 225.4 mAh/g corresponding to the current densities of 100 and 1000 mA]g, showing excellent rate capability. The improved electrochemical performance is attributed to the improved electrical conductivity and structural stability after composition of graphite sheets. The study demonstrates a new research strategy for improving sodium ion storage properties of Mo52.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.61925402,61851402,and 61734003)Science and Technology Commission of Shanghai Municipality,China(Grant No.19JC1416600)+1 种基金National Key Research and Development Program of China(Grant No.2017YFB0405600)Shanghai Education Development Foundation and Shanghai Municipal Education Commission Shuguang Program,China(Grant No.18SG01).
文摘Due to their unique characteristics,two-dimensional(2D)materials have drawn great attention as promising candidates for the next generation of integrated circuits,which generate a calculation unit with a new working mechanism,called a logic transistor.To figure out the application prospects of logic transistors,exploring the temperature dependence of logic characteristics is important.In this work,we explore the temperature effect on the electrical characteristic of a logic transistor,finding that changes in temperature cause transformation in the calculation:logical output converts from‘AND’at 10 K to‘OR’at 250 K.The transformation phenomenon of temperature regulation in logical output is caused by energy band which decreases with increasing temperature.In the experiment,the indirect band gap of MoS2 shows an obvious decrease from 1.581 eV to 1.535 eV as the temperature increases from 10 K to 250 K.The change of threshold voltage with temperature is consistent with the energy band,which confirms the theoretical analysis.Therefore,as a promising material for future integrated circuits,the demonstrated characteristic of 2D transistors suggests possible application for future functional devices.
基金Funding from the Australian Research Council Centre of Excellence Scheme(CE 140100012)the funding from National Natural Science Foundation of China(51502206)+1 种基金the CSC scholarship from the Ministry of Education of PR Chinathe support of the CSC scholarship from the Ministry of Education of PR China
文摘High performance supercapacitors coupled with mechanical flexibility are needed to drive flexible and wearable electronics that have anesthetic appeal and multi-functionality. Two dimensional(2D) materials have attracted attention owing to their unique physicochemical and electrochemical properties, in addition to their ability to form hetero-structures with other nanomaterials further improving mechanical and electrochemical properties. After a brief introduction of supercapacitors and 2D materials, recent progress on flexible supercapacitors using 2D materials is reviewed. Here we provide insights into the structure–property relationships of flexible electrodes, in particular free-standing films. We also present our perspectives on the development of flexible supercapacitors.