In Wireless Sensor Networks(WSNs),Clustering process is widely utilized for increasing the lifespan with sustained energy stability during data transmission.Several clustering protocols were devised for extending netw...In Wireless Sensor Networks(WSNs),Clustering process is widely utilized for increasing the lifespan with sustained energy stability during data transmission.Several clustering protocols were devised for extending network lifetime,but most of them failed in handling the problem of fixed clustering,static rounds,and inadequate Cluster Head(CH)selection criteria which consumes more energy.In this paper,Stochastic Ranking Improved Teaching-Learning and Adaptive Grasshopper Optimization Algorithm(SRITL-AGOA)-based Clustering Scheme for energy stabilization and extending network lifespan.This SRITL-AGOA selected CH depending on the weightage of factors such as node mobility degree,neighbour's density distance to sink,single-hop or multihop communication and Residual Energy(RE)that directly influences the energy consumption of sensor nodes.In specific,Grasshopper Optimization Algorithm(GOA)is improved through tangent-based nonlinear strategy for enhancing the ability of global optimization.On the other hand,stochastic ranking and violation constraint handling strategies are embedded into Teaching-Learning-based Optimization Algorithm(TLOA)for improving its exploitation tendencies.Then,SR and VCH improved TLOA is embedded into the exploitation phase of AGOA for selecting better CH by maintaining better balance amid exploration and exploitation.Simulation results confirmed that the proposed SRITL-AGOA improved throughput by 21.86%,network stability by 18.94%,load balancing by 16.14%with minimized energy depletion by19.21%,compared to the competitive CH selection approaches.展开更多
In this paper,we investigate the coverage optimization for LTE networks considering the network load. The network coverage is defined as the number of served users of evolved Node B(eNB)which is determined by e NBs...In this paper,we investigate the coverage optimization for LTE networks considering the network load. The network coverage is defined as the number of served users of evolved Node B(eNB)which is determined by e NBs' antenna tilt angles(ATA). The coverage is optimized by optimizing the number of served users based on the Modified Particle Swarm Optimization(MPSO)algorithm. Simulation results show that both the number of served users by each e NB and the system throughput are significantly increased. As well,the average load and the bandwidth efficiency of the network are improved.展开更多
During the pipeline plugging process,both the pipeline and the pipe isolation tool(PIT)will be greatly damaged,due to the violent vibration of the flow field.In this study,it was proposed for the first time to reduce ...During the pipeline plugging process,both the pipeline and the pipe isolation tool(PIT)will be greatly damaged,due to the violent vibration of the flow field.In this study,it was proposed for the first time to reduce the vibration of the flow field during the plugging process by optimizing the surface structure of the PIT.Firstly,the central composite design(CCD)was used to obtain the optimization schemes,and the drag coefficient and pressure coefficient were proposed to evaluate the degree of flow field changes.Secondly,a series of computational fluid dynamics(CFD)simulations were performed to obtain the drag coefficient and pressure coefficient during dynamic plugging.And the mathematical model of drag coefficient and pressure coefficient with the surface structure of the PIT were established respectively.Then,a modified particle swarm optimization(PSO)was applied to predict the optimal value of the surface structure of the PIT.Finally,an experimental rig was built to verify the effectiveness of the optimization.The results showed that the improved method could reduce the flow field vibration by 49.56%.This study provides a reference for the design of the PIT surface structure for flow field vibration technology.展开更多
As the basic work of image stitching and object recognition,image registration played an important part in the image processing field.Much previous work in registration accuracy and realtime performance progressed ver...As the basic work of image stitching and object recognition,image registration played an important part in the image processing field.Much previous work in registration accuracy and realtime performance progressed very slowly,especially in registrating images with line feature.An innovative method for image registration based on lines is proposed,it can effectively improve the accuracy and real-time performance of image registration.The line feature can deal with some registration problems where point feature does not work.Our registration process is divided into two parts.The first part determines the rough registration transformation relation between reference image and test image.Then the similarity degree among different transformation and modified nonmaximum suppression(MNMS)algorithms are obtained,which produce local optimal solution to optimize the rough registration transformation.The final optimal registration relation can be obtained from two registration parts according to the match scores.The experimental results show that the proposed method makes a more accurate registration relation and performs better in real-time situation.展开更多
针对无人战斗机(unmanned combat air vehicle,UCAV)处于存在威胁区域的战场中路径规划问题,提出一种基于分组教与学算法的UCAV自适应路径规划方法。通过分析UCAV路径评价指标,提出一种自适应的UCAV路径评价模型,根据作战环境规划出距...针对无人战斗机(unmanned combat air vehicle,UCAV)处于存在威胁区域的战场中路径规划问题,提出一种基于分组教与学算法的UCAV自适应路径规划方法。通过分析UCAV路径评价指标,提出一种自适应的UCAV路径评价模型,根据作战环境规划出距离短、威胁小的任务路径。针对教与学算法寻优精度低、耗时长的问题,提出一种分组教与学算法,引入动态分组和高斯分布扰动策略,提高算法寻优性能。通过仿真实验,该方案求解的最优路径更短且安全。展开更多
文摘In Wireless Sensor Networks(WSNs),Clustering process is widely utilized for increasing the lifespan with sustained energy stability during data transmission.Several clustering protocols were devised for extending network lifetime,but most of them failed in handling the problem of fixed clustering,static rounds,and inadequate Cluster Head(CH)selection criteria which consumes more energy.In this paper,Stochastic Ranking Improved Teaching-Learning and Adaptive Grasshopper Optimization Algorithm(SRITL-AGOA)-based Clustering Scheme for energy stabilization and extending network lifespan.This SRITL-AGOA selected CH depending on the weightage of factors such as node mobility degree,neighbour's density distance to sink,single-hop or multihop communication and Residual Energy(RE)that directly influences the energy consumption of sensor nodes.In specific,Grasshopper Optimization Algorithm(GOA)is improved through tangent-based nonlinear strategy for enhancing the ability of global optimization.On the other hand,stochastic ranking and violation constraint handling strategies are embedded into Teaching-Learning-based Optimization Algorithm(TLOA)for improving its exploitation tendencies.Then,SR and VCH improved TLOA is embedded into the exploitation phase of AGOA for selecting better CH by maintaining better balance amid exploration and exploitation.Simulation results confirmed that the proposed SRITL-AGOA improved throughput by 21.86%,network stability by 18.94%,load balancing by 16.14%with minimized energy depletion by19.21%,compared to the competitive CH selection approaches.
基金supported by National 863 Program(2014AA01A702)National Major Project(2013ZX03001032-004)+1 种基金National Natural Science Foundation(61221002 and 61201170)the Fundamental Research Funds for the Central Universities(CXLX13 093)
文摘In this paper,we investigate the coverage optimization for LTE networks considering the network load. The network coverage is defined as the number of served users of evolved Node B(eNB)which is determined by e NBs' antenna tilt angles(ATA). The coverage is optimized by optimizing the number of served users based on the Modified Particle Swarm Optimization(MPSO)algorithm. Simulation results show that both the number of served users by each e NB and the system throughput are significantly increased. As well,the average load and the bandwidth efficiency of the network are improved.
基金financially supported by the National Natural Science Foundation of China(Grant No.51575528)。
文摘During the pipeline plugging process,both the pipeline and the pipe isolation tool(PIT)will be greatly damaged,due to the violent vibration of the flow field.In this study,it was proposed for the first time to reduce the vibration of the flow field during the plugging process by optimizing the surface structure of the PIT.Firstly,the central composite design(CCD)was used to obtain the optimization schemes,and the drag coefficient and pressure coefficient were proposed to evaluate the degree of flow field changes.Secondly,a series of computational fluid dynamics(CFD)simulations were performed to obtain the drag coefficient and pressure coefficient during dynamic plugging.And the mathematical model of drag coefficient and pressure coefficient with the surface structure of the PIT were established respectively.Then,a modified particle swarm optimization(PSO)was applied to predict the optimal value of the surface structure of the PIT.Finally,an experimental rig was built to verify the effectiveness of the optimization.The results showed that the improved method could reduce the flow field vibration by 49.56%.This study provides a reference for the design of the PIT surface structure for flow field vibration technology.
文摘As the basic work of image stitching and object recognition,image registration played an important part in the image processing field.Much previous work in registration accuracy and realtime performance progressed very slowly,especially in registrating images with line feature.An innovative method for image registration based on lines is proposed,it can effectively improve the accuracy and real-time performance of image registration.The line feature can deal with some registration problems where point feature does not work.Our registration process is divided into two parts.The first part determines the rough registration transformation relation between reference image and test image.Then the similarity degree among different transformation and modified nonmaximum suppression(MNMS)algorithms are obtained,which produce local optimal solution to optimize the rough registration transformation.The final optimal registration relation can be obtained from two registration parts according to the match scores.The experimental results show that the proposed method makes a more accurate registration relation and performs better in real-time situation.
文摘针对无人战斗机(unmanned combat air vehicle,UCAV)处于存在威胁区域的战场中路径规划问题,提出一种基于分组教与学算法的UCAV自适应路径规划方法。通过分析UCAV路径评价指标,提出一种自适应的UCAV路径评价模型,根据作战环境规划出距离短、威胁小的任务路径。针对教与学算法寻优精度低、耗时长的问题,提出一种分组教与学算法,引入动态分组和高斯分布扰动策略,提高算法寻优性能。通过仿真实验,该方案求解的最优路径更短且安全。