In order to reduce both the weight of vehicles and the damage of occupants in a crash event simultaneously, it is necessary to perform a multi-objective optimal design of the automotive energy absorbing components. Mo...In order to reduce both the weight of vehicles and the damage of occupants in a crash event simultaneously, it is necessary to perform a multi-objective optimal design of the automotive energy absorbing components. Modified non-dominated sorting genetic algorithm II(NSGA II) was used for multi-objective optimization of automotive S-rail considering absorbed energy(E), peak crushing force(Fmax) and mass of the structure(W) as three conflicting objective functions. In the multi-objective optimization problem(MOP), E and Fmax are defined by polynomial models extracted using the software GEvo M based on train and test data obtained from numerical simulation of quasi-static crushing of the S-rail using ABAQUS. Finally, the nearest to ideal point(NIP)method and technique for ordering preferences by similarity to ideal solution(TOPSIS) method are used to find the some trade-off optimum design points from all non-dominated optimum design points represented by the Pareto fronts. Results represent that the optimum design point obtained from TOPSIS method exhibits better trade-off in comparison with that of optimum design point obtained from NIP method.展开更多
This paper presents an adaptive gain,finite-and fixedtime convergence super-twisting-like algorithm based on a revised barrier function,which is robust to perturbations with unknown bounds.It is shown that this algori...This paper presents an adaptive gain,finite-and fixedtime convergence super-twisting-like algorithm based on a revised barrier function,which is robust to perturbations with unknown bounds.It is shown that this algorithm can ensure a finite-and fixed-time convergence of the sliding variable to the equilibrium,no matter what the initial conditions of the system states are,and maintain it there in a predefined vicinity of the origin without violation.Also,the proposed method avoids the problem of overestimation of the control gain that exists in the current fixed-time adaptive control.Moreover,it shows that the revised barrier function can effectively reduce the computation load by obviating the need of increasing the magnitude of sampling step compared with the conventional barrier function.This feature will be beneficial when the algorithm is implemented in practice.After that,the estimation of the fixed convergence time of the proposed method is derived and the impractical requirement of the preceding fixed-time adaptive control that the adaptive gains must be large enough to engender the sliding mode at time t=0 is discarded.Finally,the outperformance of the proposed method over the existing counterpart method is demonstrated with a numerical simulation.展开更多
This paper presents an adaptive fuzzy control scheme based on modified genetic algorithm. In the control scheme, genetic algorithm is used to optimze the nonlinear quantization functions of the controller and some key...This paper presents an adaptive fuzzy control scheme based on modified genetic algorithm. In the control scheme, genetic algorithm is used to optimze the nonlinear quantization functions of the controller and some key parameters of the adaptive control algorithm. Simulation results show that this control scheme has satisfactory performance in MIMO systems, chaotic systems and delay systems.展开更多
Satisfactory results cannot be obtained when three-dimensional (3D) targets with complex maneuvering characteristics are tracked by the commonly used two-dimensional coordinated turn (2DCT) model. To address the probl...Satisfactory results cannot be obtained when three-dimensional (3D) targets with complex maneuvering characteristics are tracked by the commonly used two-dimensional coordinated turn (2DCT) model. To address the problem of 3D target tracking with strong maneuverability, on the basis of the modified three-dimensional variable turn (3DVT) model, an adaptive tracking algorithm is proposed by combining with the cubature Kalman filter (CKF) in this paper. Through ideology of real-time identification, the parameters of the model are changed to adjust the state transition matrix and the state noise covariance matrix. Therefore, states of the target are matched in real-time to achieve the purpose of adaptive tracking. Finally, four simulations are analyzed in different settings by the Monte Carlo method. All results show that the proposed algorithm can update parameters of the model and identify motion characteristics in real-time when targets tracking also has a better tracking accuracy.展开更多
An active set truncated-Newton algorithm (ASTNA) is proposed to solve the large-scale bound constrained sub-problems. The global convergence of the algorithm is obtained and two groups of numerical experiments are mad...An active set truncated-Newton algorithm (ASTNA) is proposed to solve the large-scale bound constrained sub-problems. The global convergence of the algorithm is obtained and two groups of numerical experiments are made for the various large-scale problems of varying size. The comparison results between ASTNA and the subspace limited memory quasi-Newton algorithm and between the modified augmented Lagrange multiplier methods combined with ASTNA and the modified barrier function method show the stability and effectiveness of ASTNA for simultaneous optimization of distillation column.展开更多
文摘In order to reduce both the weight of vehicles and the damage of occupants in a crash event simultaneously, it is necessary to perform a multi-objective optimal design of the automotive energy absorbing components. Modified non-dominated sorting genetic algorithm II(NSGA II) was used for multi-objective optimization of automotive S-rail considering absorbed energy(E), peak crushing force(Fmax) and mass of the structure(W) as three conflicting objective functions. In the multi-objective optimization problem(MOP), E and Fmax are defined by polynomial models extracted using the software GEvo M based on train and test data obtained from numerical simulation of quasi-static crushing of the S-rail using ABAQUS. Finally, the nearest to ideal point(NIP)method and technique for ordering preferences by similarity to ideal solution(TOPSIS) method are used to find the some trade-off optimum design points from all non-dominated optimum design points represented by the Pareto fronts. Results represent that the optimum design point obtained from TOPSIS method exhibits better trade-off in comparison with that of optimum design point obtained from NIP method.
文摘This paper presents an adaptive gain,finite-and fixedtime convergence super-twisting-like algorithm based on a revised barrier function,which is robust to perturbations with unknown bounds.It is shown that this algorithm can ensure a finite-and fixed-time convergence of the sliding variable to the equilibrium,no matter what the initial conditions of the system states are,and maintain it there in a predefined vicinity of the origin without violation.Also,the proposed method avoids the problem of overestimation of the control gain that exists in the current fixed-time adaptive control.Moreover,it shows that the revised barrier function can effectively reduce the computation load by obviating the need of increasing the magnitude of sampling step compared with the conventional barrier function.This feature will be beneficial when the algorithm is implemented in practice.After that,the estimation of the fixed convergence time of the proposed method is derived and the impractical requirement of the preceding fixed-time adaptive control that the adaptive gains must be large enough to engender the sliding mode at time t=0 is discarded.Finally,the outperformance of the proposed method over the existing counterpart method is demonstrated with a numerical simulation.
文摘This paper presents an adaptive fuzzy control scheme based on modified genetic algorithm. In the control scheme, genetic algorithm is used to optimze the nonlinear quantization functions of the controller and some key parameters of the adaptive control algorithm. Simulation results show that this control scheme has satisfactory performance in MIMO systems, chaotic systems and delay systems.
基金supported by the National Natural Science Foundation of China(51467013)
文摘Satisfactory results cannot be obtained when three-dimensional (3D) targets with complex maneuvering characteristics are tracked by the commonly used two-dimensional coordinated turn (2DCT) model. To address the problem of 3D target tracking with strong maneuverability, on the basis of the modified three-dimensional variable turn (3DVT) model, an adaptive tracking algorithm is proposed by combining with the cubature Kalman filter (CKF) in this paper. Through ideology of real-time identification, the parameters of the model are changed to adjust the state transition matrix and the state noise covariance matrix. Therefore, states of the target are matched in real-time to achieve the purpose of adaptive tracking. Finally, four simulations are analyzed in different settings by the Monte Carlo method. All results show that the proposed algorithm can update parameters of the model and identify motion characteristics in real-time when targets tracking also has a better tracking accuracy.
基金Project (2002CB312200) supported by the National Key Basic Research and Development Program of China Project(03JJY3109) supported by the Natural Science Foundation of Hunan Province
文摘An active set truncated-Newton algorithm (ASTNA) is proposed to solve the large-scale bound constrained sub-problems. The global convergence of the algorithm is obtained and two groups of numerical experiments are made for the various large-scale problems of varying size. The comparison results between ASTNA and the subspace limited memory quasi-Newton algorithm and between the modified augmented Lagrange multiplier methods combined with ASTNA and the modified barrier function method show the stability and effectiveness of ASTNA for simultaneous optimization of distillation column.