The parametric scattering center model of radar tar-get has the advantages of simplicity,sparsity and mechanism relevant,making it widely applied in fields such as radar data compression and rapid generation,radar ima...The parametric scattering center model of radar tar-get has the advantages of simplicity,sparsity and mechanism relevant,making it widely applied in fields such as radar data compression and rapid generation,radar imaging,feature extraction and recognition.This paper summarizes and analyzes the research situation,development trend,and difficult prob-lems on scattering center(SC)parametric modeling from three aspects:parametric representation,determination method of model parameters,and application.展开更多
To validate the potential space-time adaptive processing (STAP) algorithms for airborne bistatic radar clutter suppression under nonstationary and non-Gaussian clutter environments, a statistically non-Gaussian, spa...To validate the potential space-time adaptive processing (STAP) algorithms for airborne bistatic radar clutter suppression under nonstationary and non-Gaussian clutter environments, a statistically non-Gaussian, space-time clutter model in varying bistatic geometrical scenarios is presented. The inclusive effects of the model contain the range dependency of bistatic clutter spectrum and clutter power variation in range-angle cells. To capture them, a new approach to coordinate system conversion is initiated into formulating bistatic geometrical model, and the bistatic non-Gaussian amplitude clutter representation method based on a compound model is introduced. The veracity of the geometrical model is validated by using the bistatic configuration parameters of multi-channel airborne radar measurement (MCARM) experiment. And simulation results manifest that the proposed model can accurately shape the space-time clutter spectrum tied up with specific airborne bistatic radar scenario and can characterize the heterogeneity of clutter amplitude distribution in practical clutter environments.展开更多
In this paper, the drawbacks of conventional target fluctuation models used in radar target modeling are set out. It is usually difficult to statistically model a real target because there are very few parameters whic...In this paper, the drawbacks of conventional target fluctuation models used in radar target modeling are set out. It is usually difficult to statistically model a real target because there are very few parameters which can be used to approximate the probability density function (PDF) of a real target's radar cross section (RCS) in conventional target models. A new method of statistical modeling is suggested, according to which the first nth central moment of real target's RCS, combined with the Legendre orthogonal polynomials, is used to reconstruct the PDF of the target's RCS. The relationship between the coefficients of the Legendre polynomials and the central moments of RCS are deduced mathematically. Through a practical computing example, the error-of-fit is shown as a function of the orders of Legendre coefficients. By comparing the errors-of-fit caused by both the new model and the conventional models, it is concluded that the new nonparametric method for statistical modeling of radar targets is superior.展开更多
The optimal selection of radar clutter model is the premise of target detection,tracking,recognition,and cognitive waveform design in clutter background.Clutter characterization models are usually derived by mathemati...The optimal selection of radar clutter model is the premise of target detection,tracking,recognition,and cognitive waveform design in clutter background.Clutter characterization models are usually derived by mathematical simplification or empirical data fitting.However,the lack of standard model labels is a challenge in the optimal selection process.To solve this problem,a general three-level evaluation system for the model selection performance is proposed,including model selection accuracy index based on simulation data,fit goodness indexs based on the optimally selected model,and evaluation index based on the supporting performance to its third-party.The three-level evaluation system can more comprehensively and accurately describe the selection performance of the radar clutter model in different ways,and can be popularized and applied to the evaluation of other similar characterization model selection.展开更多
Micromotion is an important target feature, although the target micromotion has an unfavorable influence on the synthetic aperture radar (SAR) image interpretation due to defocusing. This paper introduces micromotio...Micromotion is an important target feature, although the target micromotion has an unfavorable influence on the synthetic aperture radar (SAR) image interpretation due to defocusing. This paper introduces micromotion parameters into the scattering center model to obtain a hybrid micromotion-scattering center model, and then proposes an optimization algorithm based on the maximal likelihood estimation to solve the model for jointly obtaining target motion and scattering parameters. Initial value estimation methods using targets' ghost images are then presented to guarantee the global and fast convergence. Simulation results show the effectiveness of the proposed algorithm especially in high precision estimation and multiple targets processing.展开更多
基金supported by the National Natural Science Foundation of China(62231001).
文摘The parametric scattering center model of radar tar-get has the advantages of simplicity,sparsity and mechanism relevant,making it widely applied in fields such as radar data compression and rapid generation,radar imaging,feature extraction and recognition.This paper summarizes and analyzes the research situation,development trend,and difficult prob-lems on scattering center(SC)parametric modeling from three aspects:parametric representation,determination method of model parameters,and application.
基金supported by the National Defense Advanced Research Foundation of China (51407020304DZ0223).
文摘To validate the potential space-time adaptive processing (STAP) algorithms for airborne bistatic radar clutter suppression under nonstationary and non-Gaussian clutter environments, a statistically non-Gaussian, space-time clutter model in varying bistatic geometrical scenarios is presented. The inclusive effects of the model contain the range dependency of bistatic clutter spectrum and clutter power variation in range-angle cells. To capture them, a new approach to coordinate system conversion is initiated into formulating bistatic geometrical model, and the bistatic non-Gaussian amplitude clutter representation method based on a compound model is introduced. The veracity of the geometrical model is validated by using the bistatic configuration parameters of multi-channel airborne radar measurement (MCARM) experiment. And simulation results manifest that the proposed model can accurately shape the space-time clutter spectrum tied up with specific airborne bistatic radar scenario and can characterize the heterogeneity of clutter amplitude distribution in practical clutter environments.
文摘In this paper, the drawbacks of conventional target fluctuation models used in radar target modeling are set out. It is usually difficult to statistically model a real target because there are very few parameters which can be used to approximate the probability density function (PDF) of a real target's radar cross section (RCS) in conventional target models. A new method of statistical modeling is suggested, according to which the first nth central moment of real target's RCS, combined with the Legendre orthogonal polynomials, is used to reconstruct the PDF of the target's RCS. The relationship between the coefficients of the Legendre polynomials and the central moments of RCS are deduced mathematically. Through a practical computing example, the error-of-fit is shown as a function of the orders of Legendre coefficients. By comparing the errors-of-fit caused by both the new model and the conventional models, it is concluded that the new nonparametric method for statistical modeling of radar targets is superior.
基金the National Natural Science Foundation of China(6187138461921001).
文摘The optimal selection of radar clutter model is the premise of target detection,tracking,recognition,and cognitive waveform design in clutter background.Clutter characterization models are usually derived by mathematical simplification or empirical data fitting.However,the lack of standard model labels is a challenge in the optimal selection process.To solve this problem,a general three-level evaluation system for the model selection performance is proposed,including model selection accuracy index based on simulation data,fit goodness indexs based on the optimally selected model,and evaluation index based on the supporting performance to its third-party.The three-level evaluation system can more comprehensively and accurately describe the selection performance of the radar clutter model in different ways,and can be popularized and applied to the evaluation of other similar characterization model selection.
基金supported by the National Natural Science Foundation for Young Scientists of China (61101182)
文摘Micromotion is an important target feature, although the target micromotion has an unfavorable influence on the synthetic aperture radar (SAR) image interpretation due to defocusing. This paper introduces micromotion parameters into the scattering center model to obtain a hybrid micromotion-scattering center model, and then proposes an optimization algorithm based on the maximal likelihood estimation to solve the model for jointly obtaining target motion and scattering parameters. Initial value estimation methods using targets' ghost images are then presented to guarantee the global and fast convergence. Simulation results show the effectiveness of the proposed algorithm especially in high precision estimation and multiple targets processing.