Aimed at the guidance requirements of some missiles which attack targets with terminal impact angle at the terminal point,a new integrated guidance and control design scheme based on variable structure control approac...Aimed at the guidance requirements of some missiles which attack targets with terminal impact angle at the terminal point,a new integrated guidance and control design scheme based on variable structure control approach for missile with terminal impact angle constraint is proposed.First,a mathematical model of an integrated guidance and control model in pitch plane is established,and then nonlinear transformation is employed to transform the mathematical model into a standard form suitable for sliding mode control method design.A sufficient condition for the existence of linear sliding surface is given in terms of linear matrix inequalities(LMIs),based on which the corresponding reaching motion controller is also developed.To verify the effectiveness of the proposed integrated design scheme,the numerical simulation of missile is made.The simulation results demonstrate that the proposed guidance and control law can guide missile to hit the target with desired impact angle and desired flight attitude angle simultaneously.展开更多
For the position tracking control of hydraulic manipulators,a novel method of time delay control(TDC) with continuous nonsingular terminal sliding mode(CNTSM) was proposed in this work.Complex dynamics of the hydrauli...For the position tracking control of hydraulic manipulators,a novel method of time delay control(TDC) with continuous nonsingular terminal sliding mode(CNTSM) was proposed in this work.Complex dynamics of the hydraulic manipulator is approximately canceled by time delay estimation(TDE),which means the proposed method is model-free and no prior knowledge of the dynamics is required.Moreover,the CNTSM term with a fast-TSM-type reaching law ensures fast convergence and high-precision tracking control performance under heavy lumped uncertainties.Despite its considerable robustness against lumped uncertainties,the proposed control scheme is continuous and chattering-free and no pressure sensors are required in practical applications.Theoretical analysis and experimental results show that faster and higher-precision position tracking performance is achieved compared with the traditional CNTSM-based TDC method using boundary layers.展开更多
The problem of diving control for an underactuated unmanned undersea vehicle(UUV) considering the presence of parameters perturbations and wave disturbances was addressesed.The vertical motion of an UUV was divided in...The problem of diving control for an underactuated unmanned undersea vehicle(UUV) considering the presence of parameters perturbations and wave disturbances was addressesed.The vertical motion of an UUV was divided into two noninteracting subsystems for surge velocity control and diving.To stabilize the vertical motion system,the surge velocity and the depth control controllers were proposed using backstepping technology and an integral-fast terminal sliding mode control(IFTSMC).It is proven that the proposed control scheme can guarantee that all the error signals in the whole closed-loop system globally converge to the sliding surface in finite time and asymptotically converge to the origin along the sliding surface.With a unified control parameters for different motion states,a series of numerical simulation results illustrate the effectiveness of the above designed control scheme,which also shows strong robustness against parameters perturbations and wave disturbances.展开更多
A decoupled nonsingular terminal sliding mode control(DNTSMC) approach is proposed to address the tracking control problem of affine nonlinear systems.A nonsingular terminal sliding mode control(NTSMC) method is p...A decoupled nonsingular terminal sliding mode control(DNTSMC) approach is proposed to address the tracking control problem of affine nonlinear systems.A nonsingular terminal sliding mode control(NTSMC) method is presented,in which the nonsingular terminal sliding surface is defined as a special nonsingular terminal function and the convergence time of the system states can be specified.The affine nonlinear system is firstly decoupled into linear subsystems via feedback linearization.Then,a nonsingular terminal sliding surface is defined and the NTSMC method is applied to each subsystem separately to ensure the finite time convergence of the closed-loop system.The verification example is given to demonstrate the effectiveness and robustness of the proposed approach.The proposed approach exhibits a considerable advantage in terms of faster tracking error convergence and less chattering compared with the conventional sliding mode control(CSMC).展开更多
基金supported by the Nationa Natural Science Foundation of China(60434010)Outstanding Youth Fund of Heilongjiang Province(JC200606)
文摘Aimed at the guidance requirements of some missiles which attack targets with terminal impact angle at the terminal point,a new integrated guidance and control design scheme based on variable structure control approach for missile with terminal impact angle constraint is proposed.First,a mathematical model of an integrated guidance and control model in pitch plane is established,and then nonlinear transformation is employed to transform the mathematical model into a standard form suitable for sliding mode control method design.A sufficient condition for the existence of linear sliding surface is given in terms of linear matrix inequalities(LMIs),based on which the corresponding reaching motion controller is also developed.To verify the effectiveness of the proposed integrated design scheme,the numerical simulation of missile is made.The simulation results demonstrate that the proposed guidance and control law can guide missile to hit the target with desired impact angle and desired flight attitude angle simultaneously.
基金Project(51004085)supported by the National Natural Science Foundation of China
文摘For the position tracking control of hydraulic manipulators,a novel method of time delay control(TDC) with continuous nonsingular terminal sliding mode(CNTSM) was proposed in this work.Complex dynamics of the hydraulic manipulator is approximately canceled by time delay estimation(TDE),which means the proposed method is model-free and no prior knowledge of the dynamics is required.Moreover,the CNTSM term with a fast-TSM-type reaching law ensures fast convergence and high-precision tracking control performance under heavy lumped uncertainties.Despite its considerable robustness against lumped uncertainties,the proposed control scheme is continuous and chattering-free and no pressure sensors are required in practical applications.Theoretical analysis and experimental results show that faster and higher-precision position tracking performance is achieved compared with the traditional CNTSM-based TDC method using boundary layers.
基金Projects (51179038,51309067) supported by the National Natural Science Foundation of China
文摘The problem of diving control for an underactuated unmanned undersea vehicle(UUV) considering the presence of parameters perturbations and wave disturbances was addressesed.The vertical motion of an UUV was divided into two noninteracting subsystems for surge velocity control and diving.To stabilize the vertical motion system,the surge velocity and the depth control controllers were proposed using backstepping technology and an integral-fast terminal sliding mode control(IFTSMC).It is proven that the proposed control scheme can guarantee that all the error signals in the whole closed-loop system globally converge to the sliding surface in finite time and asymptotically converge to the origin along the sliding surface.With a unified control parameters for different motion states,a series of numerical simulation results illustrate the effectiveness of the above designed control scheme,which also shows strong robustness against parameters perturbations and wave disturbances.
基金supported by the National Natural Science Foundation of China(11502288)
文摘A decoupled nonsingular terminal sliding mode control(DNTSMC) approach is proposed to address the tracking control problem of affine nonlinear systems.A nonsingular terminal sliding mode control(NTSMC) method is presented,in which the nonsingular terminal sliding surface is defined as a special nonsingular terminal function and the convergence time of the system states can be specified.The affine nonlinear system is firstly decoupled into linear subsystems via feedback linearization.Then,a nonsingular terminal sliding surface is defined and the NTSMC method is applied to each subsystem separately to ensure the finite time convergence of the closed-loop system.The verification example is given to demonstrate the effectiveness and robustness of the proposed approach.The proposed approach exhibits a considerable advantage in terms of faster tracking error convergence and less chattering compared with the conventional sliding mode control(CSMC).