期刊文献+
共找到3,153篇文章
< 1 2 158 >
每页显示 20 50 100
Machine learning models for optimization, validation, and prediction of light emitting diodes with kinetin based basal medium for in vitro regeneration of upland cotton (Gossypium hirsutum L.)
1
作者 ÖZKAT Gözde Yalçın AASIM Muhammad +2 位作者 BAKHSH Allah ALI Seyid Amjad ÖZCAN Sebahattin 《Journal of Cotton Research》 2025年第2期228-241,共14页
Background Plant tissue culture has emerged as a tool for improving cotton propagation and genetics,but recalcitrance nature of cotton makes it difficult to develop in vitro regeneration.Cotton’s recalcitrance is inf... Background Plant tissue culture has emerged as a tool for improving cotton propagation and genetics,but recalcitrance nature of cotton makes it difficult to develop in vitro regeneration.Cotton’s recalcitrance is influenced by genotype,explant type,and environmental conditions.To overcome these issues,this study uses different machine learning-based predictive models by employing multiple input factors.Cotyledonary node explants of two commercial cotton cultivars(STN-468 and GSN-12)were isolated from 7–8 days old seedlings,preconditioned with 5,10,and 20 mg·L^(-1) kinetin(KIN)for 10 days.Thereafter,explants were postconditioned on full Murashige and Skoog(MS),1/2MS,1/4MS,and full MS+0.05 mg·L^(-1) KIN,cultured in growth room enlightened with red and blue light-emitting diodes(LED)combination.Statistical analysis(analysis of variance,regression analysis)was employed to assess the impact of different treatments on shoot regeneration,with artificial intelligence(AI)models used for confirming the findings.Results GSN-12 exhibited superior shoot regeneration potential compared with STN-468,with an average of 4.99 shoots per explant versus 3.97.Optimal results were achieved with 5 mg·L^(-1) KIN preconditioning,1/4MS postconditioning,and 80%red LED,with maximum of 7.75 shoot count for GSN-12 under these conditions;while STN-468 reached 6.00 shoots under the conditions of 10 mg·L^(-1) KIN preconditioning,MS with 0.05 mg·L^(-1) KIN(postconditioning)and 75.0%red LED.Rooting was successfully achieved with naphthalene acetic acid and activated charcoal.Additionally,three different powerful AI-based models,namely,extreme gradient boost(XGBoost),random forest(RF),and the artificial neural network-based multilayer perceptron(MLP)regression models validated the findings.Conclusion GSN-12 outperformed STN-468 with optimal results from 5 mg·L^(-1) KIN+1/4MS+80%red LED.Application of machine learning-based prediction models to optimize cotton tissue culture protocols for shoot regeneration is helpful to improve cotton regeneration efficiency. 展开更多
关键词 machine learning COTTON In vitro regeneration Light emitting diodes optimization KINETIN
在线阅读 下载PDF
Comparative analysis of machine learning and statistical models for cotton yield prediction in major growing districts of Karnataka,India
2
作者 THIMMEGOWDA M.N. MANJUNATHA M.H. +4 位作者 LINGARAJ H. SOUMYA D.V. JAYARAMAIAH R. SATHISHA G.S. NAGESHA L. 《Journal of Cotton Research》 2025年第1期40-60,共21页
Background Cotton is one of the most important commercial crops after food crops,especially in countries like India,where it’s grown extensively under rainfed conditions.Because of its usage in multiple industries,su... Background Cotton is one of the most important commercial crops after food crops,especially in countries like India,where it’s grown extensively under rainfed conditions.Because of its usage in multiple industries,such as textile,medicine,and automobile industries,it has greater commercial importance.The crop’s performance is greatly influenced by prevailing weather dynamics.As climate changes,assessing how weather changes affect crop performance is essential.Among various techniques that are available,crop models are the most effective and widely used tools for predicting yields.Results This study compares statistical and machine learning models to assess their ability to predict cotton yield across major producing districts of Karnataka,India,utilizing a long-term dataset spanning from 1990 to 2023 that includes yield and weather factors.The artificial neural networks(ANNs)performed superiorly with acceptable yield deviations ranging within±10%during both vegetative stage(F1)and mid stage(F2)for cotton.The model evaluation metrics such as root mean square error(RMSE),normalized root mean square error(nRMSE),and modelling efficiency(EF)were also within the acceptance limits in most districts.Furthermore,the tested ANN model was used to assess the importance of the dominant weather factors influencing crop yield in each district.Specifically,the use of morning relative humidity as an individual parameter and its interaction with maximum and minimum tempera-ture had a major influence on cotton yield in most of the yield predicted districts.These differences highlighted the differential interactions of weather factors in each district for cotton yield formation,highlighting individual response of each weather factor under different soils and management conditions over the major cotton growing districts of Karnataka.Conclusions Compared with statistical models,machine learning models such as ANNs proved higher efficiency in forecasting the cotton yield due to their ability to consider the interactive effects of weather factors on yield forma-tion at different growth stages.This highlights the best suitability of ANNs for yield forecasting in rainfed conditions and for the study on relative impacts of weather factors on yield.Thus,the study aims to provide valuable insights to support stakeholders in planning effective crop management strategies and formulating relevant policies. 展开更多
关键词 COTTON machine learning models Statistical models Yield forecast Artificial neural network Weather variables
在线阅读 下载PDF
Machine learning model comparison and ensemble for predicting different morphological fractions of heavy metal elements in tailings and mine waste
3
作者 FENG Yu-xin HU Tao +4 位作者 ZHOU Na-na ZHOU Min BARKHORDARI Mohammad Sadegh LI Ke-chao QI Chong-chong 《Journal of Central South University》 2025年第9期3557-3573,共17页
Driven by rapid technological advancements and economic growth,mineral extraction and metal refining have increased dramatically,generating huge volumes of tailings and mine waste(TMWs).Investigating the morphological... Driven by rapid technological advancements and economic growth,mineral extraction and metal refining have increased dramatically,generating huge volumes of tailings and mine waste(TMWs).Investigating the morphological fractions of heavy metals and metalloids(HMMs)in TMWs is key to evaluating their leaching potential into the environment;however,traditional experiments are time-consuming and labor-intensive.In this study,10 machine learning(ML)algorithms were used and compared for rapidly predicting the morphological fractions of HMMs in TMWs.A dataset comprising 2376 data points was used,with mineral composition,elemental properties,and total concentration used as inputs and concentration of morphological fraction used as output.After grid search optimization,the extra tree model performed the best,achieving coefficient of determination(R2)of 0.946 and 0.942 on the validation and test sets,respectively.Electronegativity was found to have the greatest impact on the morphological fraction.The models’performance was enhanced by applying an ensemble method to the top three optimal ML models,including gradient boosting decision tree,extra trees and categorical boosting.Overall,the proposed framework can accurately predict the concentrations of different morphological fractions of HMMs in TMWs.This approach can minimize detection time,aid in the safe management and recovery of TMWs. 展开更多
关键词 tailings and mine waste morphological fractions model comparison machine learning model ensemble
在线阅读 下载PDF
Accurate prediction of blast-induced ground vibration intensity using optimized machine learning models
4
作者 Lihua Chen Yewuhalashet Fissha +3 位作者 Mahdi Hasanipanah Refka Ghodhbani Hesam Dehghani Jitendra Khatti 《Defence Technology(防务技术)》 2025年第10期32-46,共15页
Blast-induced ground vibration,quantified by peak particle velocity(PPV),is a crucial factor in mitigating environmental and structural risks in mining and geotechnical engineering.Accurate PPV prediction facilitates ... Blast-induced ground vibration,quantified by peak particle velocity(PPV),is a crucial factor in mitigating environmental and structural risks in mining and geotechnical engineering.Accurate PPV prediction facilitates safer and more sustainable blasting operations by minimizing adverse impacts and ensuring regulatory compliance.This study presents an advanced predictive framework integrating Cat Boost(CB)with nature-inspired optimization algorithms,including the Bat Algorithm(BAT),Sparrow Search Algorithm(SSA),Butterfly Optimization Algorithm(BOA),and Grasshopper Optimization Algorithm(GOA).A comprehensive dataset from the Sarcheshmeh Copper Mine in Iran was utilized to develop and evaluate these models using key performance metrics such as the Index of Agreement(IoA),Nash-Sutcliffe Efficiency(NSE),and the coefficient of determination(R^(2)).The hybrid CB-BOA model outperformed other approaches,achieving the highest accuracy(R^(2)=0.989)and the lowest prediction errors.SHAP analysis identified Distance(Di)as the most influential variable affecting PPV,while uncertainty analysis confirmed CB-BOA as the most reliable model,featuring the narrowest prediction interval.These findings highlight the effectiveness of hybrid machine learning models in refining PPV predictions,contributing to improved blast design strategies,enhanced structural safety,and reduced environmental impacts in mining and geotechnical engineering. 展开更多
关键词 Ground vibrations Peak particle velocity machine learning CatBoost Nature-inspired optimization Blasting safety
在线阅读 下载PDF
Fault diagnosis model based on multi-manifold learning and PSO-SVM for machinery 被引量:6
5
作者 Wang Hongjun Xu Xiaoli Rosen B G 《仪器仪表学报》 EI CAS CSCD 北大核心 2014年第S2期210-214,共5页
Fault diagnosis technology plays an important role in the industries due to the emergency fault of a machine could bring the heavy lost for the people and the company. A fault diagnosis model based on multi-manifold l... Fault diagnosis technology plays an important role in the industries due to the emergency fault of a machine could bring the heavy lost for the people and the company. A fault diagnosis model based on multi-manifold learning and particle swarm optimization support vector machine(PSO-SVM) is studied. This fault diagnosis model is used for a rolling bearing experimental of three kinds faults. The results are verified that this model based on multi-manifold learning and PSO-SVM is good at the fault sensitive features acquisition with effective accuracy. 展开更多
关键词 FAULT diagnosis multi-manifold learning particle SWARM optimization support vector machine
在线阅读 下载PDF
Temperature error compensation method for fiber optic gyroscope based on a composite model of k-means,support vector regression and particle swarm optimization
6
作者 CAO Yin LI Lijing LIANG Sheng 《Journal of Systems Engineering and Electronics》 2025年第2期510-522,共13页
As the core component of inertial navigation systems, fiber optic gyroscope (FOG), with technical advantages such as low power consumption, long lifespan, fast startup speed, and flexible structural design, are widely... As the core component of inertial navigation systems, fiber optic gyroscope (FOG), with technical advantages such as low power consumption, long lifespan, fast startup speed, and flexible structural design, are widely used in aerospace, unmanned driving, and other fields. However, due to the temper-ature sensitivity of optical devices, the influence of environmen-tal temperature causes errors in FOG, thereby greatly limiting their output accuracy. This work researches on machine-learn-ing based temperature error compensation techniques for FOG. Specifically, it focuses on compensating for the bias errors gen-erated in the fiber ring due to the Shupe effect. This work pro-poses a composite model based on k-means clustering, sup-port vector regression, and particle swarm optimization algo-rithms. And it significantly reduced redundancy within the sam-ples by adopting the interval sequence sample. Moreover, met-rics such as root mean square error (RMSE), mean absolute error (MAE), bias stability, and Allan variance, are selected to evaluate the model’s performance and compensation effective-ness. This work effectively enhances the consistency between data and models across different temperature ranges and tem-perature gradients, improving the bias stability of the FOG from 0.022 °/h to 0.006 °/h. Compared to the existing methods utiliz-ing a single machine learning model, the proposed method increases the bias stability of the compensated FOG from 57.11% to 71.98%, and enhances the suppression of rate ramp noise coefficient from 2.29% to 14.83%. This work improves the accuracy of FOG after compensation, providing theoretical guid-ance and technical references for sensors error compensation work in other fields. 展开更多
关键词 fiber optic gyroscope(FOG) temperature error com-pensation composite model machine learning CLUSTERING regression.
在线阅读 下载PDF
Parameter selection of support vector machine for function approximation based on chaos optimization 被引量:18
7
作者 Yuan Xiaofang Wang Yaonan 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2008年第1期191-197,共7页
The support vector machine (SVM) is a novel machine learning method, which has the ability to approximate nonlinear functions with arbitrary accuracy. Setting parameters well is very crucial for SVM learning results... The support vector machine (SVM) is a novel machine learning method, which has the ability to approximate nonlinear functions with arbitrary accuracy. Setting parameters well is very crucial for SVM learning results and generalization ability, and now there is no systematic, general method for parameter selection. In this article, the SVM parameter selection for function approximation is regarded as a compound optimization problem and a mutative scale chaos optimization algorithm is employed to search for optimal paraxneter values. The chaos optimization algorithm is an effective way for global optimal and the mutative scale chaos algorithm could improve the search efficiency and accuracy. Several simulation examples show the sensitivity of the SVM parameters and demonstrate the superiority of this proposed method for nonlinear function approximation. 展开更多
关键词 learning systems support vector machines (SVM) approximation theory parameter selection optimization.
在线阅读 下载PDF
Support vector machine based nonlinear model multi-step-ahead optimizing predictive control 被引量:9
8
作者 钟伟民 皮道映 孙优贤 《Journal of Central South University of Technology》 EI 2005年第5期591-595,共5页
A support vector machine with guadratic polynomial kernel function based nonlinear model multi-step-ahead optimizing predictive controller was presented. A support vector machine based predictive model was established... A support vector machine with guadratic polynomial kernel function based nonlinear model multi-step-ahead optimizing predictive controller was presented. A support vector machine based predictive model was established by black-box identification. And a quadratic objective function with receding horizon was selected to obtain the controller output. By solving a nonlinear optimization problem with equality constraint of model output and boundary constraint of controller output using Nelder-Mead simplex direct search method, a sub-optimal control law was achieved in feature space. The effect of the controller was demonstrated on a recognized benchmark problem and a continuous-stirred tank reactor. The simulation results show that the multi-step-ahead predictive controller can be well applied to nonlinear system, with better performance in following reference trajectory and disturbance-rejection. 展开更多
关键词 nonlinear model predictive control support vector machine nonlinear system identification kernel function nonlinear optimization
在线阅读 下载PDF
Support Vector Machine-Based Nonlinear System Modeling and Control 被引量:1
9
作者 张浩然 韩正之 +1 位作者 冯瑞 于志强 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2003年第3期53-58,共6页
This paper provides an introduction to a support vector machine, a new kernel-based technique introduced in statistical learning theory and structural risk minimization, then presents a modeling-control framework base... This paper provides an introduction to a support vector machine, a new kernel-based technique introduced in statistical learning theory and structural risk minimization, then presents a modeling-control framework based on SVM. At last a numerical experiment is taken to demonstrate the proposed approach's correctness and effectiveness. 展开更多
关键词 Support vector machine Statistical learning theory Nonlinear systems modeling and control.
在线阅读 下载PDF
A Bayesian Network Learning Algorithm Based on Independence Test and Ant Colony Optimization 被引量:21
10
作者 JI Jun-Zhong ZHANG Hong-Xun HU Ren-Bing LIU Chun-Nian 《自动化学报》 EI CSCD 北大核心 2009年第3期281-288,共8页
关键词 最优化 随机系统 自动化 BN
在线阅读 下载PDF
Improved nonconvex optimization model for low-rank matrix recovery 被引量:1
11
作者 李玲芝 邹北骥 朱承璋 《Journal of Central South University》 SCIE EI CAS CSCD 2015年第3期984-991,共8页
Low-rank matrix recovery is an important problem extensively studied in machine learning, data mining and computer vision communities. A novel method is proposed for low-rank matrix recovery, targeting at higher recov... Low-rank matrix recovery is an important problem extensively studied in machine learning, data mining and computer vision communities. A novel method is proposed for low-rank matrix recovery, targeting at higher recovery accuracy and stronger theoretical guarantee. Specifically, the proposed method is based on a nonconvex optimization model, by solving the low-rank matrix which can be recovered from the noisy observation. To solve the model, an effective algorithm is derived by minimizing over the variables alternately. It is proved theoretically that this algorithm has stronger theoretical guarantee than the existing work. In natural image denoising experiments, the proposed method achieves lower recovery error than the two compared methods. The proposed low-rank matrix recovery method is also applied to solve two real-world problems, i.e., removing noise from verification code and removing watermark from images, in which the images recovered by the proposed method are less noisy than those of the two compared methods. 展开更多
关键词 machine learning computer vision matrix recovery nonconvex optimization
在线阅读 下载PDF
Low rank optimization for efficient deep learning:making a balance between compact architecture and fast training
12
作者 OU Xinwei CHEN Zhangxin +1 位作者 ZHU Ce LIU Yipeng 《Journal of Systems Engineering and Electronics》 SCIE CSCD 2024年第3期509-531,F0002,共24页
Deep neural networks(DNNs)have achieved great success in many data processing applications.However,high computational complexity and storage cost make deep learning difficult to be used on resource-constrained devices... Deep neural networks(DNNs)have achieved great success in many data processing applications.However,high computational complexity and storage cost make deep learning difficult to be used on resource-constrained devices,and it is not environmental-friendly with much power cost.In this paper,we focus on low-rank optimization for efficient deep learning techniques.In the space domain,DNNs are compressed by low rank approximation of the network parameters,which directly reduces the storage requirement with a smaller number of network parameters.In the time domain,the network parameters can be trained in a few subspaces,which enables efficient training for fast convergence.The model compression in the spatial domain is summarized into three categories as pre-train,pre-set,and compression-aware methods,respectively.With a series of integrable techniques discussed,such as sparse pruning,quantization,and entropy coding,we can ensemble them in an integration framework with lower computational complexity and storage.In addition to summary of recent technical advances,we have two findings for motivating future works.One is that the effective rank,derived from the Shannon entropy of the normalized singular values,outperforms other conventional sparse measures such as the?_1 norm for network compression.The other is a spatial and temporal balance for tensorized neural networks.For accelerating the training of tensorized neural networks,it is crucial to leverage redundancy for both model compression and subspace training. 展开更多
关键词 model compression subspace training effective rank low rank tensor optimization efficient deep learning
在线阅读 下载PDF
A physics-informed machine learning solution for landslide susceptibility mapping based on three-dimensional slope stability evaluation
13
作者 WANG Yun-hao WANG Lu-qi +4 位作者 ZHANG Wen-gang LIU Song-lin SUN Wei-xin HONG Li ZHU Zheng-wei 《Journal of Central South University》 CSCD 2024年第11期3838-3853,共16页
Landslide susceptibility mapping is a crucial tool for disaster prevention and management.The performance of conventional data-driven model is greatly influenced by the quality of the samples data.The random selection... Landslide susceptibility mapping is a crucial tool for disaster prevention and management.The performance of conventional data-driven model is greatly influenced by the quality of the samples data.The random selection of negative samples results in the lack of interpretability throughout the assessment process.To address this limitation and construct a high-quality negative samples database,this study introduces a physics-informed machine learning approach,combining the random forest model with Scoops 3D,to optimize the negative samples selection strategy and assess the landslide susceptibility of the study area.The Scoops 3D is employed to determine the factor of safety value leveraging Bishop’s simplified method.Instead of conventional random selection,negative samples are extracted from the areas with a high factor of safety value.Subsequently,the results of conventional random forest model and physics-informed data-driven model are analyzed and discussed,focusing on model performance and prediction uncertainty.In comparison to conventional methods,the physics-informed model,set with a safety area threshold of 3,demonstrates a noteworthy improvement in the mean AUC value by 36.7%,coupled with a reduced prediction uncertainty.It is evident that the determination of the safety area threshold exerts an impact on both prediction uncertainty and model performance. 展开更多
关键词 machine learning physics-informed model negative samples selection INTERPRETABILITY landslide susceptibility mapping
在线阅读 下载PDF
Thickness of excavation damaged zone estimation using four novel hybrid ensemble learning models : A case study of Xiangxi Gold Mine and Fankou Lead-zinc Mine in China
14
作者 LIU Lei-lei HONG Zhi-xian +1 位作者 ZHAO Guo-yan LIANG Wei-zhang 《Journal of Central South University》 CSCD 2024年第11期3965-3982,共18页
Underground excavation can lead to stress redistribution and result in an excavation damaged zone(EDZ),which is an important factor affecting the excavation stability and support design.Accurately estimating the thick... Underground excavation can lead to stress redistribution and result in an excavation damaged zone(EDZ),which is an important factor affecting the excavation stability and support design.Accurately estimating the thickness of EDZ is essential to ensure the safety of the underground excavation.In this study,four novel hybrid ensemble learning models were developed by optimizing the extreme gradient boosting(XGBoost)and random forest(RF)algorithms through simulated annealing(SA)and Bayesian optimization(BO)approaches,namely SA-XGBoost,SA-RF,BO XGBoost and BO-RF models.A total of 210 cases were collected from Xiangxi Gold Mine in Hunan Province and Fankou Lead-zinc Mine in Guangdong Province,China,including seven input indicators:embedding depth,drift span,uniaxial compressive strength of rock,rock mass rating,unit weight of rock,lateral pressure coefficient of roadway and unit consumption of blasting explosive.The performance of the proposed models was evaluated by the coefficient of determination,root mean squared error,mean absolute error and variance accounted for.The results indicated that the SA-XGBoost model performed best.The Shapley additive explanations method revealed that the embedding depth was the most important indicator.Moreover,the convergence curves suggested that the SA-XGBoost model can reduce the generalization error and avoid overfitting. 展开更多
关键词 excavation damaged zone machine learning simulated annealing Bayesian optimization extreme gradient boosting random forest
在线阅读 下载PDF
E-Learning中情绪认知个性化学生模型的研究 被引量:4
15
作者 王万森 龚文 《计算机应用研究》 CSCD 北大核心 2011年第11期4174-4176,4183,共4页
为了提高E-Learning情绪教学的适应性和教学效果,针对传统学生模型的不足,引入人格、学习情绪及学习风格。通过OCC三维情绪空间描述学习情绪和丹尼尔.沙博人格划分理论进行情绪调节,通过美国心理学家布鲁姆的认知理论描述学生的认知能力... 为了提高E-Learning情绪教学的适应性和教学效果,针对传统学生模型的不足,引入人格、学习情绪及学习风格。通过OCC三维情绪空间描述学习情绪和丹尼尔.沙博人格划分理论进行情绪调节,通过美国心理学家布鲁姆的认知理论描述学生的认知能力,通过Felder-Silverman学习风格并结合支持向量机技术描述学习偏好的个性化特征。将情绪、认知、学习风格相结合构建一个完善的适合E-Learning教学的学生模型。通过将此学生模型应用到E-Learning教学中,不仅可以解决网络教学系统的情感缺失,而且大大提高了实用性、智能性和个性化。 展开更多
关键词 学生模型 学习情绪 认知能力 学习风格 支持向量机
在线阅读 下载PDF
基于Q-learning的工业互联网资源优化调度 被引量:3
16
作者 张延华 杨乐 +3 位作者 李萌 吴文君 杨睿哲 司鹏搏 《北京工业大学学报》 CAS CSCD 北大核心 2020年第11期1213-1221,共9页
面对5G与工业互联网中日益增长的数据传输与计算需求,移动边缘计算已逐渐成为一种新兴的解决方法,可有效应对工业互联网设备自身计算能力的不足,并充分缓解网络拥塞等问题.然而,当数量庞大的设备同时发送计算请求时,往往会超出边缘计算... 面对5G与工业互联网中日益增长的数据传输与计算需求,移动边缘计算已逐渐成为一种新兴的解决方法,可有效应对工业互联网设备自身计算能力的不足,并充分缓解网络拥塞等问题.然而,当数量庞大的设备同时发送计算请求时,往往会超出边缘计算服务器的计算负载.此外,工业互联网设备通常仅装配有限的能量供给,无法承受能源消耗过多的任务,且庞大的设备数量还决定了网络连接、数据计算等系统开销.因此,面向工业互联网场景中机器类型通信设备的计算任务卸载问题,提出一种基于Q-learning的计算任务卸载决策方法,综合考虑任务卸载过程中的网络环境和服务器状态,并联合优化卸载过程产生的时延、能耗和经济开销.仿真结果表明,所提优化框架可有效减少计算任务卸载系统的时延、能耗和经济的总开销. 展开更多
关键词 资源优化 计算任务卸载 工业互联网 移动边缘计算 Q-learning 机器类型通信设备
在线阅读 下载PDF
基于Q-Learning算法和神经网络的飞艇控制 被引量:5
17
作者 聂春雨 祝明 +1 位作者 郑泽伟 武哲 《北京航空航天大学学报》 EI CAS CSCD 北大核心 2017年第12期2431-2438,共8页
针对现代飞艇控制中动力学模型不确定性带来的系统建模和参数辨识工作较为复杂的问题,提出了一种基于自适应建模和在线学习机制的控制策略。设计了一种在分析实际运动的基础上建立飞艇控制马尔可夫决策过程(MDP)模型的方法,具有自适应... 针对现代飞艇控制中动力学模型不确定性带来的系统建模和参数辨识工作较为复杂的问题,提出了一种基于自适应建模和在线学习机制的控制策略。设计了一种在分析实际运动的基础上建立飞艇控制马尔可夫决策过程(MDP)模型的方法,具有自适应性。采用Q-Learning算法进行在线学习并利用小脑模型关节控制器(CMAC)神经网络对动作值函数进行泛化加速。对本文方法进行仿真并与经过参数整定的PID控制器对比,验证了该控制策略的有效性。结果表明,在线学习过程能够在数小时内收敛,通过自适应方法建立的MDP模型能够满足常见飞艇控制任务的需求。本文所提控制器能够获得与PID控制器精度相当且更为智能的控制效果。 展开更多
关键词 飞艇 马尔可夫决策过程(MDP) 机器学习 Q-learning 小脑模型关节控制器(CMAC)
在线阅读 下载PDF
A novel hybrid estimation of distribution algorithm for solving hybrid flowshop scheduling problem with unrelated parallel machine 被引量:10
18
作者 孙泽文 顾幸生 《Journal of Central South University》 SCIE EI CAS CSCD 2017年第8期1779-1788,共10页
The hybrid flow shop scheduling problem with unrelated parallel machine is a typical NP-hard combinatorial optimization problem, and it exists widely in chemical, manufacturing and pharmaceutical industry. In this wor... The hybrid flow shop scheduling problem with unrelated parallel machine is a typical NP-hard combinatorial optimization problem, and it exists widely in chemical, manufacturing and pharmaceutical industry. In this work, a novel mathematic model for the hybrid flow shop scheduling problem with unrelated parallel machine(HFSPUPM) was proposed. Additionally, an effective hybrid estimation of distribution algorithm was proposed to solve the HFSPUPM, taking advantage of the features in the mathematic model. In the optimization algorithm, a new individual representation method was adopted. The(EDA) structure was used for global search while the teaching learning based optimization(TLBO) strategy was used for local search. Based on the structure of the HFSPUPM, this work presents a series of discrete operations. Simulation results show the effectiveness of the proposed hybrid algorithm compared with other algorithms. 展开更多
关键词 hybrid estimation of distribution algorithm teaching learning based optimization strategy hybrid flow shop unrelated parallel machine scheduling
在线阅读 下载PDF
Batch Process Modelling and Optimal Control Based on Neural Network Model 被引量:6
19
作者 JieZhang 《自动化学报》 EI CSCD 北大核心 2005年第1期19-31,共13页
This paper presents several neural network based modelling, reliable optimal control, and iterative learning control methods for batch processes. In order to overcome the lack of robustness of a single neural network,... This paper presents several neural network based modelling, reliable optimal control, and iterative learning control methods for batch processes. In order to overcome the lack of robustness of a single neural network, bootstrap aggregated neural networks are used to build reliable data based empirical models. Apart from improving the model generalisation capability, a bootstrap aggregated neural network can also provide model prediction confidence bounds. A reliable optimal control method by incorporating model prediction confidence bounds into the optimisation objective function is presented. A neural network based iterative learning control strategy is presented to overcome the problem due to unknown disturbances and model-plant mismatches. The proposed methods are demonstrated on a simulated batch polymerisation process. 展开更多
关键词 批量处理 神经网络模型 聚合 重复学习控制 最佳控制
在线阅读 下载PDF
A survey of multi-modal learning theory
20
作者 HUANG Yu HUANG Longbo 《中山大学学报(自然科学版)(中英文)》 CAS CSCD 北大核心 2023年第5期38-49,共12页
Deep multi-modal learning,a rapidly growing field with a wide range of practical applications,aims to effectively utilize and integrate information from multiple sources,known as modalities.Despite its impressive empi... Deep multi-modal learning,a rapidly growing field with a wide range of practical applications,aims to effectively utilize and integrate information from multiple sources,known as modalities.Despite its impressive empirical performance,the theoretical foundations of deep multi-modal learning have yet to be fully explored.In this paper,we will undertake a comprehensive survey of recent developments in multi-modal learning theories,focusing on the fundamental properties that govern this field.Our goal is to provide a thorough collection of current theoretical tools for analyzing multi-modal learning,to clarify their implications for practitioners,and to suggest future directions for the establishment of a solid theoretical foundation for deep multi-modal learning. 展开更多
关键词 multi-modal learning machine learning theory optimization GENERALIZATION
在线阅读 下载PDF
上一页 1 2 158 下一页 到第
使用帮助 返回顶部