An approach for modeling a human cognitive framework in time-stressed decision making is presented. The recognitive and metacognitive processes that represent the cognitive framework are modeled by the colored Petri n...An approach for modeling a human cognitive framework in time-stressed decision making is presented. The recognitive and metacognitive processes that represent the cognitive framework are modeled by the colored Petri nets (CPNs). A structural and behavioral analysis method is adopted to obtain the static and dynamic property used to verify the CPNs model of the cognitive framework. Finally, an example from the command and control radar recognition system is used to evaluate the feasibility and availability of the CPNs model adopted in practical systems.展开更多
Pedestrian's road-crossing model is the key part of micro-simulation for mixed traffic at signalized intersection.To reproduce the crossing behavior of pedestrians,the microscopic behaviors of the pedestrians pass...Pedestrian's road-crossing model is the key part of micro-simulation for mixed traffic at signalized intersection.To reproduce the crossing behavior of pedestrians,the microscopic behaviors of the pedestrians passing through the crosswalk at signalized intersection were analyzed.A pedestrian's decision making model based on gap acceptance theory was proposed.Based on the field data at three typical intersections in Beijing,China,the critical gaps and lags of pedestrians were calibrated.In addition,considering pedestrian's required space,a modification of the social force model that consists of a self-deceleration mechanism prevents a simulated pedestrian from continuously pushing over other pedestrians,making the simulation more realistic.After the simple change,the modified social force model is able to reproduce the fundamental diagram of pedestrian flows for densities less than 3.5 m-2 as reported in the literature.展开更多
A new method of system failure analysis was proposed. First, considering the relationships between the failure subsystems,the decision making trial and evaluation laboratory(DEMATEL) method was used to calculate the d...A new method of system failure analysis was proposed. First, considering the relationships between the failure subsystems,the decision making trial and evaluation laboratory(DEMATEL) method was used to calculate the degree of correlation between the failure subsystems, analyze the combined effect of related failures, and obtain the degree of correlation by using the directed graph and matrix operations. Then, the interpretative structural modeling(ISM) method was combined to intuitively show the logical relationship of many failure subsystems and their influences on each other by using multilevel hierarchical structure model and obtaining the critical subsystems. Finally, failure mode effects and criticality analysis(FMECA) was used to perform a qualitative hazard analysis of critical subsystems, determine the critical failure mode, and clarify the direction of reliability improvement.Through an example, the result demonstrates that the proposed method can be efficiently applied to system failure analysis problems.展开更多
基金supported by the National Natural Science Foundation of China(60874068).
文摘An approach for modeling a human cognitive framework in time-stressed decision making is presented. The recognitive and metacognitive processes that represent the cognitive framework are modeled by the colored Petri nets (CPNs). A structural and behavioral analysis method is adopted to obtain the static and dynamic property used to verify the CPNs model of the cognitive framework. Finally, an example from the command and control radar recognition system is used to evaluate the feasibility and availability of the CPNs model adopted in practical systems.
基金Project(70972041)supported by the National Natural Science Foundation of ChinaProject(20100009110010)supported by the PhD Programs Foundation of Ministry of Education of ChinaProject(2011YJS246)supported by Fundamental Research Funds for the Central Universities of China
文摘Pedestrian's road-crossing model is the key part of micro-simulation for mixed traffic at signalized intersection.To reproduce the crossing behavior of pedestrians,the microscopic behaviors of the pedestrians passing through the crosswalk at signalized intersection were analyzed.A pedestrian's decision making model based on gap acceptance theory was proposed.Based on the field data at three typical intersections in Beijing,China,the critical gaps and lags of pedestrians were calibrated.In addition,considering pedestrian's required space,a modification of the social force model that consists of a self-deceleration mechanism prevents a simulated pedestrian from continuously pushing over other pedestrians,making the simulation more realistic.After the simple change,the modified social force model is able to reproduce the fundamental diagram of pedestrian flows for densities less than 3.5 m-2 as reported in the literature.
基金Project(51275205)supported by the National Natural Science Foundation of China
文摘A new method of system failure analysis was proposed. First, considering the relationships between the failure subsystems,the decision making trial and evaluation laboratory(DEMATEL) method was used to calculate the degree of correlation between the failure subsystems, analyze the combined effect of related failures, and obtain the degree of correlation by using the directed graph and matrix operations. Then, the interpretative structural modeling(ISM) method was combined to intuitively show the logical relationship of many failure subsystems and their influences on each other by using multilevel hierarchical structure model and obtaining the critical subsystems. Finally, failure mode effects and criticality analysis(FMECA) was used to perform a qualitative hazard analysis of critical subsystems, determine the critical failure mode, and clarify the direction of reliability improvement.Through an example, the result demonstrates that the proposed method can be efficiently applied to system failure analysis problems.