近年来,大语言模型(LLM)在自然语言处理、计算机视觉等领域都展示出卓越的语言理解和对话能力。然而,它们常常会在专业领域中产生与正确答案不相符的推理结果。这为LLM在精确和准确的决策任务中的应用带来了重大挑战。为了解决这个问题...近年来,大语言模型(LLM)在自然语言处理、计算机视觉等领域都展示出卓越的语言理解和对话能力。然而,它们常常会在专业领域中产生与正确答案不相符的推理结果。这为LLM在精确和准确的决策任务中的应用带来了重大挑战。为了解决这个问题,提出一种规则指导的后提示词大模型(PP-LLM)生成方法。该方法通过生成后提示词可以将原问题转化为2个更容易解决的子问题,从而引入专家知识、降低任务学习难度。具体来说,使用知识指导的特定规则将监督数据集的输出部分转化为后提示词与输出部分的组合。PP-LLM方法不改变模型的训练和推理过程,并且不增加计算量。实验结果表明,PP-LLM方法显著提高了推理结果的准确性,缩小了模型预测与实际答案之间的差距,与不使用所提方法的结果相比,F1值、ROUGE(Recall-Oriented Understudy for Gisting Evaluation)等都有显著提高。可见,以上工作提高了LLM在专业应用上的可靠性,并为LLM生成技术提供了新的思路。展开更多
影像基因组学认为神经影像与基因之间存在着一定程度的相关性,利用遗传变异与影像数据进行疾病分析愈发受研究人员重视。在实践中,临床医生拥有的数据规模往往较小,但仍然希望使用深度学习来解决现实问题。考虑到不断扩大的数据规模与...影像基因组学认为神经影像与基因之间存在着一定程度的相关性,利用遗传变异与影像数据进行疾病分析愈发受研究人员重视。在实践中,临床医生拥有的数据规模往往较小,但仍然希望使用深度学习来解决现实问题。考虑到不断扩大的数据规模与昂贵的标注成本,构建能够利用多模态数据的无监督学习方法十分必要。为了满足上述需求,提出了一种基于影像与基因多模态表格数据对比学习的表征学习方法(multimodal tabular data with contrastive learning,MTCL),该模型利用了静息态功能磁共振成像(rs-fMRI)和单核苷酸多态性(single nucleotide polymorphisms,SNP)数据,无需数据的任何标签信息。为了增强可解释性,模型先通过特征提取模块将rs-fMRI和SNP数据转换为表格类型结构,再通过多模态表格数据对比学习模块对多模态数据进行融合,并获得融合后的数据表征。在重度抑郁症(major depression disorder,MDD)数据上,文中提出的方法能够有效提升MDD诊断性能。此外,MTCL方法结合了模型归因方法挖掘与MDD相关的影像和遗传生物标记物,提高了模型的可解释性,有助于研究人员对疾病发病机制的理解。展开更多
文摘近年来,大语言模型(LLM)在自然语言处理、计算机视觉等领域都展示出卓越的语言理解和对话能力。然而,它们常常会在专业领域中产生与正确答案不相符的推理结果。这为LLM在精确和准确的决策任务中的应用带来了重大挑战。为了解决这个问题,提出一种规则指导的后提示词大模型(PP-LLM)生成方法。该方法通过生成后提示词可以将原问题转化为2个更容易解决的子问题,从而引入专家知识、降低任务学习难度。具体来说,使用知识指导的特定规则将监督数据集的输出部分转化为后提示词与输出部分的组合。PP-LLM方法不改变模型的训练和推理过程,并且不增加计算量。实验结果表明,PP-LLM方法显著提高了推理结果的准确性,缩小了模型预测与实际答案之间的差距,与不使用所提方法的结果相比,F1值、ROUGE(Recall-Oriented Understudy for Gisting Evaluation)等都有显著提高。可见,以上工作提高了LLM在专业应用上的可靠性,并为LLM生成技术提供了新的思路。
文摘针对蝴蝶优化算法(butterfly optimization algorithm,BOA)在复杂环境路径规划过程中求解最短路径时存在收敛速度慢、易陷入局部最优等缺点,提出一种改进的蝴蝶优化算法。首先,在初始化蝴蝶种群时,为保证初代种群多样化,避免陷入局部最优解,通过Tent映射生成初代种群位置;其次,在蝴蝶香味计算阶段引入动态感觉模态,随着迭代过程的持续推进逐步增强蝴蝶的香味值,以缩短收敛时间;再次,为进一步缩短收敛时间,在全局搜索阶段引入遗传算法中的选择因子加快蝴蝶在全局搜索时向最优蝴蝶移动的速度;然后,在局部搜索阶段引入动态变异因子,有效避免在路径规划时陷入局部最优;最后,使用一种基于视线(line of sight,LOS)检测方法的初始种群生成策略,以进一步减少路径中断点的生成,同时确保由BOA算法生成的路径可行解的多样性。实验结果表明,改进的蝴蝶优化算法具有较快的收敛速度,且规划出来的路径在保证路径长度合理的情况下具有更高的平滑度。
文摘影像基因组学认为神经影像与基因之间存在着一定程度的相关性,利用遗传变异与影像数据进行疾病分析愈发受研究人员重视。在实践中,临床医生拥有的数据规模往往较小,但仍然希望使用深度学习来解决现实问题。考虑到不断扩大的数据规模与昂贵的标注成本,构建能够利用多模态数据的无监督学习方法十分必要。为了满足上述需求,提出了一种基于影像与基因多模态表格数据对比学习的表征学习方法(multimodal tabular data with contrastive learning,MTCL),该模型利用了静息态功能磁共振成像(rs-fMRI)和单核苷酸多态性(single nucleotide polymorphisms,SNP)数据,无需数据的任何标签信息。为了增强可解释性,模型先通过特征提取模块将rs-fMRI和SNP数据转换为表格类型结构,再通过多模态表格数据对比学习模块对多模态数据进行融合,并获得融合后的数据表征。在重度抑郁症(major depression disorder,MDD)数据上,文中提出的方法能够有效提升MDD诊断性能。此外,MTCL方法结合了模型归因方法挖掘与MDD相关的影像和遗传生物标记物,提高了模型的可解释性,有助于研究人员对疾病发病机制的理解。