-
题名基于轻量级卷积网络的铣削粗糙度在机监测研究
- 1
-
-
作者
刘岳开
高宏力
郭亮
由智超
李世超
-
机构
西南交通大学教育部先进驱动研究与节能中心
西南交通大学机械工程学院
国防科技大学装备综合保障技术重点实验室
-
出处
《西南交通大学学报》
EI
CSCD
北大核心
2024年第1期193-200,共8页
-
基金
国家自然科学基金(51775452)。
-
文摘
传统机器学习类方法对光源类型、设备安装误差等因素较为敏感,需要反复调试与实验,难以实现规模化生产的自动检测.针对上述问题,提出了一种铣削粗糙度在机监测方法,有效提升了检测效率和准确性.首先,采用低感度参数设置的方向梯度直方图特征的候选框提取算子实现铣削工件的定位,并基于点匹配算法校正安装误差;然后,通过清晰度评价指标实现工业相机对焦过程优化;最后,构建了一种面向移动端实时计算的轻量级卷积神经网络模型,可对不同粗糙度工件表面纹理进行分类,并在立铣加工纹理数据集上进行了实验验证.实验结果表明:相比普通卷积神经网络,在模型复杂度相似的情况下,以乘、加运算次数为指标,提出模型推理所需运算量减少55%;代价敏感函数的引入能有效提升粗糙度识别模型对不平衡数据的稳定性;所提方法与传统机器学习方法相比,在检测帧率、图像分辨率相同的实验条件下,精准率、召回率分别提高了8%、21%.
-
关键词
粗糙度测量
加工表面纹理
深度可分离卷积
方向梯度直方图
移动端实时计算
计算机视觉
-
Keywords
roughness measurement
machined surface texture
deep separable convolution
histogram of oriented gradient
mobile oriented real-time computing
computer vision
-
分类号
TP277
[自动化与计算机技术—检测技术与自动化装置]
TG547
[金属学及工艺—金属切削加工及机床]
-
-
题名基于卡伦康复系统的盲人步态研究分析
- 2
-
-
作者
廖俊
尹雯
郑文超
廖瑞松
-
机构
成都中医药大学附属四川省康复医院·四川省八一康复中心
成都爱迪眼科医院
-
出处
《成都医学院学报》
CAS
2022年第1期39-42,共4页
-
基金
四川省卫生健康委员会医学科技项目课题(No:18PJ082)。
-
文摘
目的分析盲人步态的特点,为持续性研究盲人定向行走提供基线数据。方法使用卡伦康复系统分析20名盲人的步态时空参数和步态平衡,比较与明眼人步态的差别。结果盲人双脚自身的步态时空参数对比差异无统计学意义(P>0.05);明眼人组步速(1.19±0.76)m/s,盲人组步速(0.90±0.22)m/s,差异有统计学意义(P<0.05);明眼人组步频(112.48±5.99)步/min,盲人组步频(32.95±2.28)步/min,差异有统计学意义(P<0.05);明眼人组左右脚的步长分别为(0.63±0.05)、(0.64±0.05)m,盲人组左右脚的步长分别为(0.49±0.09)、(0.49±0.10)m,差异有统计学意义(P<0.05);明眼人组双支撑相(31.28±1.23)%,盲人组双支撑相(33.75±0.98)%,差异有统计学意义(P<0.05)。结论盲人自身步态对称,与明眼人行走步态存在差异,步态平衡下降,此结论有助于改进盲人步态训练的方法和思路,为提升盲人定向行走提供了一定参考。
-
关键词
卡伦康复
盲人
步态
定向行走
平衡
-
Keywords
CAREN(computer assisted rehabilitation environment)rehabilitation
The blind
Gait
orientation and mobility
Balance
-
分类号
R496
[医药卫生—康复医学]
-