By Mobile Edge Computing(MEC), computation-intensive tasks are offloaded from mobile devices to cloud servers, and thus the energy consumption of mobile devices can be notably reduced. In this paper, we study task off...By Mobile Edge Computing(MEC), computation-intensive tasks are offloaded from mobile devices to cloud servers, and thus the energy consumption of mobile devices can be notably reduced. In this paper, we study task offloading in multi-user MEC systems with heterogeneous clouds, including edge clouds and remote clouds. Tasks are forwarded from mobile devices to edge clouds via wireless channels, and they can be further forwarded to remote clouds via the Internet. Our objective is to minimize the total energy consumption of multiple mobile devices, subject to bounded-delay requirements of tasks. Based on dynamic programming, we propose an algorithm that minimizes the energy consumption, by jointly allocating bandwidth and computational resources to mobile devices. The algorithm is of pseudo-polynomial complexity. To further reduce the complexity, we propose an approximation algorithm with energy discretization, and its total energy consumption is proved to be within a bounded gap from the optimum. Simulation results show that, nearly 82.7% energy of mobile devices can be saved by task offloading compared with mobile device execution.展开更多
This paper analyzes the reasons for the formation of security problems in mobile agent systems, and analyzes and compares the security mechanisms and security technologies of existing mobile agent systems from the per...This paper analyzes the reasons for the formation of security problems in mobile agent systems, and analyzes and compares the security mechanisms and security technologies of existing mobile agent systems from the perspective of blocking attacks. On this basis, the host protection mobile agent protection technology is selected, and a method to enhance the security protection of mobile agents (referred to as IEOP method) is proposed. The method first encrypts the mobile agent code using the encryption function, and then encapsulates the encrypted mobile agent with the improved EOP protocol IEOP, and then traces the suspicious execution result. Experiments show that using this method can block most malicious attacks on mobile agents, and can protect the integrity and confidentiality of mobile agents, but the increment of mobile agent tour time is not large.展开更多
The problem of joint radio and cloud resources allocation is studied for heterogeneous mobile cloud computing networks. The objective of the proposed joint resource allocation schemes is to maximize the total utility ...The problem of joint radio and cloud resources allocation is studied for heterogeneous mobile cloud computing networks. The objective of the proposed joint resource allocation schemes is to maximize the total utility of users as well as satisfy the required quality of service(QoS) such as the end-to-end response latency experienced by each user. We formulate the problem of joint resource allocation as a combinatorial optimization problem. Three evolutionary approaches are considered to solve the problem: genetic algorithm(GA), ant colony optimization with genetic algorithm(ACO-GA), and quantum genetic algorithm(QGA). To decrease the time complexity, we propose a mapping process between the resource allocation matrix and the chromosome of GA, ACO-GA, and QGA, search the available radio and cloud resource pairs based on the resource availability matrixes for ACOGA, and encode the difference value between the allocated resources and the minimum resource requirement for QGA. Extensive simulation results show that our proposed methods greatly outperform the existing algorithms in terms of running time, the accuracy of final results, the total utility, resource utilization and the end-to-end response latency guaranteeing.展开更多
Mobile Cloud Computing (MCC) is emerging as one of the most important branches of cloud computing. In this paper, MCC is defined as cloud computing extended by mobility, and a new ad-hoc infrastructure based on mobi...Mobile Cloud Computing (MCC) is emerging as one of the most important branches of cloud computing. In this paper, MCC is defined as cloud computing extended by mobility, and a new ad-hoc infrastructure based on mobile devices. It provides mobile users with data storage and processing services on a cloud computing platform. Because mobile cloud computing is still in its infancy we aim to clarify confusion that has arisen from different views. Existing works are reviewed, and an overview of recent advances in mobile cloud computing is provided. We investigate representative infrastructures of mobile cloud computing and analyze key components. Moreover, emerging MCC models and services are discussed, and challenging issues are identified that will need to be addressed in future work.展开更多
With network developing and virtualization rising, more and more indoor environment (POIs) such as care, library, office, even bus and subway can provide plenty of bandwidth and computing resources. Meanwhile many p...With network developing and virtualization rising, more and more indoor environment (POIs) such as care, library, office, even bus and subway can provide plenty of bandwidth and computing resources. Meanwhile many people daily spending much time in them are still suffering from the mobile device with limited resources. This situation implies a novel local cloud computing paradigm in which mobile device can leverage nearby resources to facilitate task execution. In this paper, we implement a mobile local computing system based on indoor virtual cloud. This system mainly contains three key components: 1)As to application, we create a parser to generate the "method call and cost tree" and analyze it to identify resource- intensive methods. 2) As to mobile device, we design a self-learning execution controller to make offtoading decision at runtime. 3) As to cloud, we construct a social scheduling based application-isolation virtual cloud model. The evaluation results demonstrate that our system is effective and efficient by evaluating CPU- intensive calculation application, Memory- intensive image translation application and I/ O-intensive image downloading application.展开更多
Two waves of technology are dramatically changing daily life: cloud computing and mobile phones. New cloud computing services such as webmail and content rich data search have emerged. However, in order to use these ...Two waves of technology are dramatically changing daily life: cloud computing and mobile phones. New cloud computing services such as webmail and content rich data search have emerged. However, in order to use these services, a mobile phone must be able to run new applications and handle high network bandwidth. Worldwide, about 3.45 billion mobile phones are low end phones; they have low bandwidth and cannot run new applications. Because of this technology gap, most mobile users are unable to experience cloud computing services with their thumbs. In this paper, a novel platform, Thumb-in-Cloud, is proposed to bridge this gap. Thumb-in-Cloud consists of two subsystems: Thumb-Machine and Thumb-Gateways. Thumb-Machine is a virtual machine built into a low end phone to enable it to run new applications. Thumb-Gateways can tailor cloud computing services by reformatting and compressing the service to fit the phone ' s profile.展开更多
Offloading application to cloud can augment mobile devices' computation capabilities for the emerging resource-hungry mobile application, however it can also consume both much time and energy for mobile device off...Offloading application to cloud can augment mobile devices' computation capabilities for the emerging resource-hungry mobile application, however it can also consume both much time and energy for mobile device offloading application remotely to cloud. In this paper, we develop a newly adaptive application offloading decision-transmission scheduling scheme which can solve above problem efficiently. Specifically, we first propose an adaptive application offloading model which allows multiple target clouds coexisting. Second, based on Lyapunov optimization theory, a low complexity adaptive offloading decision-transmission scheduling scheme has been proposed. And the performance analysis is also given. Finally, simulation results show that,compared with that all applications are executed locally, mobile device can save 68.557% average execution time and 67.095% average energy consumption under situations.展开更多
Mobile devices are increasingly interacting with clouds,and mobile cloud computing has emerged as a new paradigm.An central topic in mobile cloud computing is computation partitioning,which involves partitioning the e...Mobile devices are increasingly interacting with clouds,and mobile cloud computing has emerged as a new paradigm.An central topic in mobile cloud computing is computation partitioning,which involves partitioning the execution of applications between the mobile side and cloud side so that execution cost is minimized.This paper discusses computation partitioning in mobile cloud computing.We first present the background and system models of mobile cloud computation partitioning systems.We then describe and compare state-of-the-art mobile computation partitioning in terms of application modeling,profiling,optimization,and implementation.We point out the main research issues and directions and summarize our own works.展开更多
Despite the rapid advances in mobile technology, many constraints still prevent mobile devices from running resource-demanding applications in mobile environments. Cloud computing with flexibility, stability and scala...Despite the rapid advances in mobile technology, many constraints still prevent mobile devices from running resource-demanding applications in mobile environments. Cloud computing with flexibility, stability and scalability enables access to unlimited resources for mobile devices, so more studies have focused on cloud computingbased mobile services. Due to the stability of wireless networks, changes of Quality of Service (QoS) level and user' real-time preferences, it is becoming challenging to determine how to adaptively choose the "appropriate" service in mobile cloud computing environments. In this paper, we present an adaptive service selection method. This method first extracts user preferences from a service's evaluation and calculates the similarity of the service with the weighted Euclidean distance. Then, they are combined with user context data and the most suitable service is recommended to the user. In addition, we apply the fuzzy cognitive imps-based model to the adaptive policy, which improves the efficiency and performance of the algorithm. Finally, the experiment and simulation demonstrate that our approach is effective.展开更多
In 2010, cloud computing gained momentum. Cloud computing is a model for real-time, on-demand, pay-for-use network access to a shared pool of configurable computing and storage resources. It has matured from a promisi...In 2010, cloud computing gained momentum. Cloud computing is a model for real-time, on-demand, pay-for-use network access to a shared pool of configurable computing and storage resources. It has matured from a promising business concept to a working reality in both the private and public IT sectors. The U.S. government, for example, has requested all its agencies to evaluate cloud computing alternatives as part of their budget submissions for new IT investment.展开更多
This article establishes a three-tier mobile edge computing(MEC) network, which takes into account the cooperation between unmanned aerial vehicles(UAVs). In this MEC network, we aim to minimize the processing delay o...This article establishes a three-tier mobile edge computing(MEC) network, which takes into account the cooperation between unmanned aerial vehicles(UAVs). In this MEC network, we aim to minimize the processing delay of tasks by jointly optimizing the deployment of UAVs and offloading decisions,while meeting the computing capacity constraint of UAVs. However, the resulting optimization problem is nonconvex, which cannot be solved by general optimization tools in an effective and efficient way. To this end, we propose a two-layer optimization algorithm to tackle the non-convexity of the problem by capitalizing on alternating optimization. In the upper level algorithm, we rely on differential evolution(DE) learning algorithm to solve the deployment of the UAVs. In the lower level algorithm, we exploit distributed deep neural network(DDNN) to generate offloading decisions. Numerical results demonstrate that the two-layer optimization algorithm can effectively obtain the near-optimal deployment of UAVs and offloading strategy with low complexity.展开更多
A mobile edge cloud provides a platform to accommodate the offloaded traffic workload generated by mobile devices.It can significantly reduce the access delay for mobile application users.However,the high user mobilit...A mobile edge cloud provides a platform to accommodate the offloaded traffic workload generated by mobile devices.It can significantly reduce the access delay for mobile application users.However,the high user mobility brings significant challenges to the service provisioning for mobile users,especially to delay-sensitive mobile applications.With the objective to maximize a profit,which positively associates with the overall admitted traffic served by the local edge cloud,and negatively associates with the access delay as well as virtual machine migration delay,we study a fundamental problem in this paper:how to update the service provisioning solution for a given group of mobile users.Such a profit-maximization problem is formulated as a nonlinear integer linear programming and linearized by absolute value manipulation techniques.Then,we propose a framework of heuristic algorithms to solve this Nondeterministic Polynomial(NP)-hard problem.The numerical simulation results demonstrate the efficiency of the devised algorithms.Some useful summaries are concluded via the analysis of evaluation results.展开更多
Access control is a key mechanism to secure outsourced data in mobile clouds. Some existing solutions are proposed to enforce flexible access control on outsourced data or reduce the computations performed by mobile d...Access control is a key mechanism to secure outsourced data in mobile clouds. Some existing solutions are proposed to enforce flexible access control on outsourced data or reduce the computations performed by mobile devices. However, less attention has been paid to the efficiency of revocation when there are mobile devices needed to be revoked. In this paper, we put forward a new solution, referred to as flexible access control with outsourceable revocation(FACOR) for mobile clouds. The FACOR applies the attribute-based encryption to enable flexible access control on outsourced data, and allows mobile users to outsource the time-consuming encryption and decryption computations to proxies, with only requiring attributes authorization to be fully trusted. As an advantageous feature, FACOR provides an outsourceable revocation for mobile users to reduce the complicated attribute-based revocation operations. The security analysis shows that our FACOR scheme achieves data security against collusion attacks and unauthorized accesses from revoked users. Both theoretical and experimental results confirm that our proposed scheme greatly reliefs the mobile devices from heavy encryption and decryption computations, as well as the complicated revocation of access rights in mobile clouds.展开更多
The rapid growth of cloud computing and mobile Internet services has triggered the emergence of mobile cloud services. Among many challenges,QoS management is one of the crucial issues for mobile cloud services. Howev...The rapid growth of cloud computing and mobile Internet services has triggered the emergence of mobile cloud services. Among many challenges,QoS management is one of the crucial issues for mobile cloud services. However,existing works on QoS management for cloud computing can hardly fit well to the mobile environment. This paper presents a QoS management architecture and an adaptive management process that can predict,assess and ensure QoS of mobile cloud services. Furthermore,we propose an adaptive QoS management model based on Fuzzy Cognitive Maps ( FCM) ,which suitably represents the causal relationships among QoS related properties and cloud service modes. We evaluate the proposed solution and demonstrate its effectiveness and benefits based on simulation work.展开更多
Smartphones and cloud computing technologies have enabled the development of sophisticated mobile applications. Still, many of these applications do not perform well due to limited computation, data storage, network b...Smartphones and cloud computing technologies have enabled the development of sophisticated mobile applications. Still, many of these applications do not perform well due to limited computation, data storage, network bandwidth, and battery capacity in a mobile phone. While applications can be redesigned with client-server models to benefit from cloud services, users are no longer in full control of the application. This is also a serious concern. We propose an innovative framework for executing mobile applications in a virfualized cloud environment. With encryption and isolation, this environment is controlled by the user and protected against eavesdropping from cloud providers. We have developed efficient schemes for migrating applications and synchronizing data between execution environments. Performance and power issues within a virtualized execution environment are also addressed using power saving and scheduling techniques that enable automatic, seamless application migration.展开更多
Mobile search is beset with problems because of mobile terminal constraints and also because its characteristics are different from the traditional Internet search model. This paper analyzes cloud computing technologi...Mobile search is beset with problems because of mobile terminal constraints and also because its characteristics are different from the traditional Internet search model. This paper analyzes cloud computing technologies--especially mass data storage, parallel computing, and virtualization--in an attempt to solve technical problems in mobile search. The broad prospects of cloud computing are also discussed.展开更多
基金the National Key R&D Program of China 2018YFB1800804the Nature Science Foundation of China (No. 61871254,No. 61861136003,No. 91638204)Hitachi Ltd.
文摘By Mobile Edge Computing(MEC), computation-intensive tasks are offloaded from mobile devices to cloud servers, and thus the energy consumption of mobile devices can be notably reduced. In this paper, we study task offloading in multi-user MEC systems with heterogeneous clouds, including edge clouds and remote clouds. Tasks are forwarded from mobile devices to edge clouds via wireless channels, and they can be further forwarded to remote clouds via the Internet. Our objective is to minimize the total energy consumption of multiple mobile devices, subject to bounded-delay requirements of tasks. Based on dynamic programming, we propose an algorithm that minimizes the energy consumption, by jointly allocating bandwidth and computational resources to mobile devices. The algorithm is of pseudo-polynomial complexity. To further reduce the complexity, we propose an approximation algorithm with energy discretization, and its total energy consumption is proved to be within a bounded gap from the optimum. Simulation results show that, nearly 82.7% energy of mobile devices can be saved by task offloading compared with mobile device execution.
基金supported by the National Natural Science Foundation of China (61772196 61472136)+3 种基金the Hunan Provincial Focus Social Science Fund (2016ZDB006)Hunan Provincial Social Science Achievement Review Committee results appraisal identification project (Xiang social assessment 2016JD05)Key Project of Hunan Provincial Social Science Achievement Review Committee (XSP 19ZD1005)the financial support provided by the Key Laboratory of Hunan Province for New Retail Virtual Reality Technology (2017TP1026)
文摘This paper analyzes the reasons for the formation of security problems in mobile agent systems, and analyzes and compares the security mechanisms and security technologies of existing mobile agent systems from the perspective of blocking attacks. On this basis, the host protection mobile agent protection technology is selected, and a method to enhance the security protection of mobile agents (referred to as IEOP method) is proposed. The method first encrypts the mobile agent code using the encryption function, and then encapsulates the encrypted mobile agent with the improved EOP protocol IEOP, and then traces the suspicious execution result. Experiments show that using this method can block most malicious attacks on mobile agents, and can protect the integrity and confidentiality of mobile agents, but the increment of mobile agent tour time is not large.
基金supported by the National Natural Science Foundation of China (No. 61741102, No. 61471164)China Scholarship Council
文摘The problem of joint radio and cloud resources allocation is studied for heterogeneous mobile cloud computing networks. The objective of the proposed joint resource allocation schemes is to maximize the total utility of users as well as satisfy the required quality of service(QoS) such as the end-to-end response latency experienced by each user. We formulate the problem of joint resource allocation as a combinatorial optimization problem. Three evolutionary approaches are considered to solve the problem: genetic algorithm(GA), ant colony optimization with genetic algorithm(ACO-GA), and quantum genetic algorithm(QGA). To decrease the time complexity, we propose a mapping process between the resource allocation matrix and the chromosome of GA, ACO-GA, and QGA, search the available radio and cloud resource pairs based on the resource availability matrixes for ACOGA, and encode the difference value between the allocated resources and the minimum resource requirement for QGA. Extensive simulation results show that our proposed methods greatly outperform the existing algorithms in terms of running time, the accuracy of final results, the total utility, resource utilization and the end-to-end response latency guaranteeing.
基金supported by Hong Kong RGC under the GRF grant PolyU5106/10ENokia Research Lab (Beijing) under the grant H-ZG19+1 种基金supported by the National S&T Major Project of China under No.2009ZX03006-001Guangdong S&T Major Project under No.2009A080207002
文摘Mobile Cloud Computing (MCC) is emerging as one of the most important branches of cloud computing. In this paper, MCC is defined as cloud computing extended by mobility, and a new ad-hoc infrastructure based on mobile devices. It provides mobile users with data storage and processing services on a cloud computing platform. Because mobile cloud computing is still in its infancy we aim to clarify confusion that has arisen from different views. Existing works are reviewed, and an overview of recent advances in mobile cloud computing is provided. We investigate representative infrastructures of mobile cloud computing and analyze key components. Moreover, emerging MCC models and services are discussed, and challenging issues are identified that will need to be addressed in future work.
基金ACKNOWLEDGEMENTS This work was supported by the Research Fund for the Doctoral Program of Higher Education of China (No.20110031110026 and No.20120031110035), the National Natural Science Foundation of China (No. 61103214), and the Key Project in Tianjin Science & Technology Pillar Program (No. 13ZCZDGX01098).
文摘With network developing and virtualization rising, more and more indoor environment (POIs) such as care, library, office, even bus and subway can provide plenty of bandwidth and computing resources. Meanwhile many people daily spending much time in them are still suffering from the mobile device with limited resources. This situation implies a novel local cloud computing paradigm in which mobile device can leverage nearby resources to facilitate task execution. In this paper, we implement a mobile local computing system based on indoor virtual cloud. This system mainly contains three key components: 1)As to application, we create a parser to generate the "method call and cost tree" and analyze it to identify resource- intensive methods. 2) As to mobile device, we design a self-learning execution controller to make offtoading decision at runtime. 3) As to cloud, we construct a social scheduling based application-isolation virtual cloud model. The evaluation results demonstrate that our system is effective and efficient by evaluating CPU- intensive calculation application, Memory- intensive image translation application and I/ O-intensive image downloading application.
基金supported by CityU Applied Research Grant (ARG) under Grant No. 9667033Shenzhen Basic Research Grant under No. JC200903170456A+3 种基金Shenzhen-HK Innovation Cycle Grant under No. ZYB200907080078ARGC General Research Fund (GRF), HK SAR under Grant No. CityU 114609CityU Applied R & D Centre (ARD (Ctr)) under Grant No. 9681001China NSF under Grant No. 61070222/F020802
文摘Two waves of technology are dramatically changing daily life: cloud computing and mobile phones. New cloud computing services such as webmail and content rich data search have emerged. However, in order to use these services, a mobile phone must be able to run new applications and handle high network bandwidth. Worldwide, about 3.45 billion mobile phones are low end phones; they have low bandwidth and cannot run new applications. Because of this technology gap, most mobile users are unable to experience cloud computing services with their thumbs. In this paper, a novel platform, Thumb-in-Cloud, is proposed to bridge this gap. Thumb-in-Cloud consists of two subsystems: Thumb-Machine and Thumb-Gateways. Thumb-Machine is a virtual machine built into a low end phone to enable it to run new applications. Thumb-Gateways can tailor cloud computing services by reformatting and compressing the service to fit the phone ' s profile.
基金supported by National Natural Science Foundation of China (Grant No.61261017, No.61571143 and No.61561014)Guangxi Natural Science Foundation (2013GXNSFAA019334 and 2014GXNSFAA118387)+3 种基金Key Laboratory of Cognitive Radio and Information Processing, Ministry of Education (No.CRKL150112)Guangxi Key Lab of Wireless Wideband Communication & Signal Processing (GXKL0614202, GXKL0614101 and GXKL061501)Sci.and Tech.on Info.Transmission and Dissemination in Communication Networks Lab (No.ITD-U14008/KX142600015)Graduate Student Research Innovation Project of Guilin University of Electronic Technology (YJCXS201523)
文摘Offloading application to cloud can augment mobile devices' computation capabilities for the emerging resource-hungry mobile application, however it can also consume both much time and energy for mobile device offloading application remotely to cloud. In this paper, we develop a newly adaptive application offloading decision-transmission scheduling scheme which can solve above problem efficiently. Specifically, we first propose an adaptive application offloading model which allows multiple target clouds coexisting. Second, based on Lyapunov optimization theory, a low complexity adaptive offloading decision-transmission scheduling scheme has been proposed. And the performance analysis is also given. Finally, simulation results show that,compared with that all applications are executed locally, mobile device can save 68.557% average execution time and 67.095% average energy consumption under situations.
基金supported in part by Hong Kong RGC under GRF Grant 510412the National High-Technology Research and Development Program (863 Program) of China under Grant 2013AA01A212.
文摘Mobile devices are increasingly interacting with clouds,and mobile cloud computing has emerged as a new paradigm.An central topic in mobile cloud computing is computation partitioning,which involves partitioning the execution of applications between the mobile side and cloud side so that execution cost is minimized.This paper discusses computation partitioning in mobile cloud computing.We first present the background and system models of mobile cloud computation partitioning systems.We then describe and compare state-of-the-art mobile computation partitioning in terms of application modeling,profiling,optimization,and implementation.We point out the main research issues and directions and summarize our own works.
基金the third level of 2011 Zhejiang Province 151 Talent Project and National Natural Science Foundation of China under Grant No.61100043
文摘Despite the rapid advances in mobile technology, many constraints still prevent mobile devices from running resource-demanding applications in mobile environments. Cloud computing with flexibility, stability and scalability enables access to unlimited resources for mobile devices, so more studies have focused on cloud computingbased mobile services. Due to the stability of wireless networks, changes of Quality of Service (QoS) level and user' real-time preferences, it is becoming challenging to determine how to adaptively choose the "appropriate" service in mobile cloud computing environments. In this paper, we present an adaptive service selection method. This method first extracts user preferences from a service's evaluation and calculates the similarity of the service with the weighted Euclidean distance. Then, they are combined with user context data and the most suitable service is recommended to the user. In addition, we apply the fuzzy cognitive imps-based model to the adaptive policy, which improves the efficiency and performance of the algorithm. Finally, the experiment and simulation demonstrate that our approach is effective.
文摘In 2010, cloud computing gained momentum. Cloud computing is a model for real-time, on-demand, pay-for-use network access to a shared pool of configurable computing and storage resources. It has matured from a promising business concept to a working reality in both the private and public IT sectors. The U.S. government, for example, has requested all its agencies to evaluate cloud computing alternatives as part of their budget submissions for new IT investment.
基金supported in part by National Natural Science Foundation of China (Grant No. 62101277)in part by the Natural Science Foundation of Jiangsu Province (Grant No. BK20200822)+1 种基金in part by the Natural Science Foundation of Jiangsu Higher Education Institutions of China (Grant No. 20KJB510036)in part by the Guangxi Key Laboratory of Multimedia Communications and Network Technology (Grant No. KLF-2020-03)。
文摘This article establishes a three-tier mobile edge computing(MEC) network, which takes into account the cooperation between unmanned aerial vehicles(UAVs). In this MEC network, we aim to minimize the processing delay of tasks by jointly optimizing the deployment of UAVs and offloading decisions,while meeting the computing capacity constraint of UAVs. However, the resulting optimization problem is nonconvex, which cannot be solved by general optimization tools in an effective and efficient way. To this end, we propose a two-layer optimization algorithm to tackle the non-convexity of the problem by capitalizing on alternating optimization. In the upper level algorithm, we rely on differential evolution(DE) learning algorithm to solve the deployment of the UAVs. In the lower level algorithm, we exploit distributed deep neural network(DDNN) to generate offloading decisions. Numerical results demonstrate that the two-layer optimization algorithm can effectively obtain the near-optimal deployment of UAVs and offloading strategy with low complexity.
基金partially supported by JSPS KAKENHI under Grant Number JP16J07062
文摘A mobile edge cloud provides a platform to accommodate the offloaded traffic workload generated by mobile devices.It can significantly reduce the access delay for mobile application users.However,the high user mobility brings significant challenges to the service provisioning for mobile users,especially to delay-sensitive mobile applications.With the objective to maximize a profit,which positively associates with the overall admitted traffic served by the local edge cloud,and negatively associates with the access delay as well as virtual machine migration delay,we study a fundamental problem in this paper:how to update the service provisioning solution for a given group of mobile users.Such a profit-maximization problem is formulated as a nonlinear integer linear programming and linearized by absolute value manipulation techniques.Then,we propose a framework of heuristic algorithms to solve this Nondeterministic Polynomial(NP)-hard problem.The numerical simulation results demonstrate the efficiency of the devised algorithms.Some useful summaries are concluded via the analysis of evaluation results.
基金supported in part by National High-Tech Research and Development Program of China(“863” Program)under Grant No.2015AA016004National Natural Science Foundation of China under Grants No.61173154,61272451,61572380
文摘Access control is a key mechanism to secure outsourced data in mobile clouds. Some existing solutions are proposed to enforce flexible access control on outsourced data or reduce the computations performed by mobile devices. However, less attention has been paid to the efficiency of revocation when there are mobile devices needed to be revoked. In this paper, we put forward a new solution, referred to as flexible access control with outsourceable revocation(FACOR) for mobile clouds. The FACOR applies the attribute-based encryption to enable flexible access control on outsourced data, and allows mobile users to outsource the time-consuming encryption and decryption computations to proxies, with only requiring attributes authorization to be fully trusted. As an advantageous feature, FACOR provides an outsourceable revocation for mobile users to reduce the complicated attribute-based revocation operations. The security analysis shows that our FACOR scheme achieves data security against collusion attacks and unauthorized accesses from revoked users. Both theoretical and experimental results confirm that our proposed scheme greatly reliefs the mobile devices from heavy encryption and decryption computations, as well as the complicated revocation of access rights in mobile clouds.
文摘The rapid growth of cloud computing and mobile Internet services has triggered the emergence of mobile cloud services. Among many challenges,QoS management is one of the crucial issues for mobile cloud services. However,existing works on QoS management for cloud computing can hardly fit well to the mobile environment. This paper presents a QoS management architecture and an adaptive management process that can predict,assess and ensure QoS of mobile cloud services. Furthermore,we propose an adaptive QoS management model based on Fuzzy Cognitive Maps ( FCM) ,which suitably represents the causal relationships among QoS related properties and cloud service modes. We evaluate the proposed solution and demonstrate its effectiveness and benefits based on simulation work.
基金supported in part by a grant from the National Science Council under No. 98-2220-E-002-020, 99-2220-E-002-026, and 95-2221-E-002-098-MY3
文摘Smartphones and cloud computing technologies have enabled the development of sophisticated mobile applications. Still, many of these applications do not perform well due to limited computation, data storage, network bandwidth, and battery capacity in a mobile phone. While applications can be redesigned with client-server models to benefit from cloud services, users are no longer in full control of the application. This is also a serious concern. We propose an innovative framework for executing mobile applications in a virfualized cloud environment. With encryption and isolation, this environment is controlled by the user and protected against eavesdropping from cloud providers. We have developed efficient schemes for migrating applications and synchronizing data between execution environments. Performance and power issues within a virtualized execution environment are also addressed using power saving and scheduling techniques that enable automatic, seamless application migration.
文摘Mobile search is beset with problems because of mobile terminal constraints and also because its characteristics are different from the traditional Internet search model. This paper analyzes cloud computing technologies--especially mass data storage, parallel computing, and virtualization--in an attempt to solve technical problems in mobile search. The broad prospects of cloud computing are also discussed.