现有安全稳定控制系统(简称稳控系统)的可靠性评估方法本质上属于静态建模,由于未能体现系统内各装置老化和检修等动态过程,在一定程度上影响了评估结果的准确性。为此,文中提出一种基于马尔可夫链蒙特卡洛(Markov chain Monte Carlo,MC...现有安全稳定控制系统(简称稳控系统)的可靠性评估方法本质上属于静态建模,由于未能体现系统内各装置老化和检修等动态过程,在一定程度上影响了评估结果的准确性。为此,文中提出一种基于马尔可夫链蒙特卡洛(Markov chain Monte Carlo,MCMC)的稳控系统动态可靠性评估方法。首先针对失效过程,构建四状态非齐次马尔可夫模型来模拟装置老化过程,并给出各状态评判方法;其次针对修复过程,分析不同检修策略对装置状态转移的影响以体现状态检修的差异性;最后考虑稳控装置状态转移过程的时序或条件相关性,对稳控系统可靠性进行动态建模。以实际稳控系统为例,仿真对比不同检修策略下的可靠性,并对模型参数进行灵敏度分析。评估结果表明,该方法可以求解稳控系统的时变可用度,用于指导稳控装置现场合理检修。展开更多
波束内目标与诱饵的参数估计是导引头正确实现目标分选、完成波束指向调整与精确跟踪的必要条件。目标与诱饵的"紧密接近"导致接收回波混叠,使得常规参数测量与估计方法失效。基于实际采样处理中目标回波能量会"溢出&qu...波束内目标与诱饵的参数估计是导引头正确实现目标分选、完成波束指向调整与精确跟踪的必要条件。目标与诱饵的"紧密接近"导致接收回波混叠,使得常规参数测量与估计方法失效。基于实际采样处理中目标回波能量会"溢出"到相邻匹配滤波采样点这一信号模型,通过贝叶斯原理从观测的条件似然以及未知参数的先验分布获取待估计参数的后验概率分布,采用Markov Chain Monte Carlo(MCMC)方法中的Metropolis-Hastings(M-H)抽样算法联合估计目标与诱饵的相关参数,并根据拖曳式诱饵干扰对抗的特点对M-H抽样进行了改进。各种典型干扰条件及动态攻击场景下的仿真试验表明了本文方法的有效性。展开更多
弹道导弹在再入过程中为了提高自身突防能力往往伴随着分导现象。由于分导弹头数目未知,距离目标近且再入速度非常相近,使其以团状形态运动,在未知导弹任何先验信息前提下如何对分导弹头进行快速关联已成为亟待解决的难题。该文提出了...弹道导弹在再入过程中为了提高自身突防能力往往伴随着分导现象。由于分导弹头数目未知,距离目标近且再入速度非常相近,使其以团状形态运动,在未知导弹任何先验信息前提下如何对分导弹头进行快速关联已成为亟待解决的难题。该文提出了一种改进的实时滑窗马尔可夫链-蒙特卡洛(Markov Chain Monte Carlo,MCMC)次优数据关联算法,它应用蒙特卡洛采样方法对监控区域的测量集合进行组合优化,获得最大的后验概率密度进而逼近马氏链的平稳分布。该算法结合弹头分导实际情况,重新分配关联假设权值并优化了继承性,极大地减小了关联时间。仿真结果表明该算法与经典的多假设算法相比,关联概率随着目标密集程度增加而显著提高,并且计算量远小于多假设算法。展开更多
文摘现有安全稳定控制系统(简称稳控系统)的可靠性评估方法本质上属于静态建模,由于未能体现系统内各装置老化和检修等动态过程,在一定程度上影响了评估结果的准确性。为此,文中提出一种基于马尔可夫链蒙特卡洛(Markov chain Monte Carlo,MCMC)的稳控系统动态可靠性评估方法。首先针对失效过程,构建四状态非齐次马尔可夫模型来模拟装置老化过程,并给出各状态评判方法;其次针对修复过程,分析不同检修策略对装置状态转移的影响以体现状态检修的差异性;最后考虑稳控装置状态转移过程的时序或条件相关性,对稳控系统可靠性进行动态建模。以实际稳控系统为例,仿真对比不同检修策略下的可靠性,并对模型参数进行灵敏度分析。评估结果表明,该方法可以求解稳控系统的时变可用度,用于指导稳控装置现场合理检修。
文摘波束内目标与诱饵的参数估计是导引头正确实现目标分选、完成波束指向调整与精确跟踪的必要条件。目标与诱饵的"紧密接近"导致接收回波混叠,使得常规参数测量与估计方法失效。基于实际采样处理中目标回波能量会"溢出"到相邻匹配滤波采样点这一信号模型,通过贝叶斯原理从观测的条件似然以及未知参数的先验分布获取待估计参数的后验概率分布,采用Markov Chain Monte Carlo(MCMC)方法中的Metropolis-Hastings(M-H)抽样算法联合估计目标与诱饵的相关参数,并根据拖曳式诱饵干扰对抗的特点对M-H抽样进行了改进。各种典型干扰条件及动态攻击场景下的仿真试验表明了本文方法的有效性。
文摘弹道导弹在再入过程中为了提高自身突防能力往往伴随着分导现象。由于分导弹头数目未知,距离目标近且再入速度非常相近,使其以团状形态运动,在未知导弹任何先验信息前提下如何对分导弹头进行快速关联已成为亟待解决的难题。该文提出了一种改进的实时滑窗马尔可夫链-蒙特卡洛(Markov Chain Monte Carlo,MCMC)次优数据关联算法,它应用蒙特卡洛采样方法对监控区域的测量集合进行组合优化,获得最大的后验概率密度进而逼近马氏链的平稳分布。该算法结合弹头分导实际情况,重新分配关联假设权值并优化了继承性,极大地减小了关联时间。仿真结果表明该算法与经典的多假设算法相比,关联概率随着目标密集程度增加而显著提高,并且计算量远小于多假设算法。