When the maneuverability of a pursuer is not significantly higher than that of an evader,it will be difficult to intercept the evader with only one pursuer.Therefore,this article adopts a two-to-one differential game ...When the maneuverability of a pursuer is not significantly higher than that of an evader,it will be difficult to intercept the evader with only one pursuer.Therefore,this article adopts a two-to-one differential game strategy,the game of kind is generally considered to be angle-optimized,which allows unlimited turns,but these practices do not take into account the effect of acceleration,which does not correspond to the actual situation,thus,based on the angle-optimized,the acceleration optimization and the acceleration upper bound constraint are added into the game for consideration.A two-to-one differential game problem is proposed in the three-dimensional space,and an improved multi-objective grey wolf optimization(IMOGWO)algorithm is proposed to solve the optimal game point of this problem.With the equations that describe the relative motions between the pursuers and the evader in the three-dimensional space,a multi-objective function with constraints is given as the performance index to design an optimal strategy for the differential game.Then the optimal game point is solved by using the IMOGWO algorithm.It is proved based on Markov chains that with the IMOGWO,the Pareto solution set is the solution of the differential game.Finally,it is verified through simulations that the pursuers can capture the escapee,and via comparative experiments,it is shown that the IMOGWO algorithm performs well in terms of running time and memory usage.展开更多
针对动态不确定战场环境下多无人机对多区域、多目标的协同察打任务规划过程中存在的信息不确定、任务多约束及航迹强耦合的多目标优化与决策问题,结合Dubins航迹规划算法,提出了一种融合多种改进策略的灰狼优化算法(grey wolf optimiza...针对动态不确定战场环境下多无人机对多区域、多目标的协同察打任务规划过程中存在的信息不确定、任务多约束及航迹强耦合的多目标优化与决策问题,结合Dubins航迹规划算法,提出了一种融合多种改进策略的灰狼优化算法(grey wolf optimization algorithm incorporating multiple improvement strategies,IMISGWO).首先,针对动态环境带来的无人机巡航速度及察打任务消失时间的不确定性,基于可信性理论建立了以最大化任务收益为指标的任务规划数学模型;其次,为实现该问题的快速求解,设计了初始解均匀分布、个体通信机制调整、动态权重更新和跳出局部最优等策略,提升算法解搜索能力;最后,构建了多无人机察打一体典型任务仿真场景,通过数字仿真以及虚实结合半实物仿真试验验证了算法的可行性和有效性.仿真结果表明:算法在求解不确定环境下耦合航迹的多无人机察打一体任务规划问题时,能够生成多机高效的任务执行序列和满足无人机飞行性能约束的飞行轨迹,且能够适用于无人机数量增加导致问题复杂度增加情形下此类问题的求解.展开更多
针对导弹打击地面目标时的瞄准点优选问题,提出了一种利用改进灰狼优化算法(improved grey wolf op timization,IGWO)选取最优瞄准点的瞄准点选择方法。该算法基于维度学习的狩猎搜索策略(dimension learning-based hunting,DLH),为每...针对导弹打击地面目标时的瞄准点优选问题,提出了一种利用改进灰狼优化算法(improved grey wolf op timization,IGWO)选取最优瞄准点的瞄准点选择方法。该算法基于维度学习的狩猎搜索策略(dimension learning-based hunting,DLH),为每个瞄准点构建相邻的瞄准点集合,集合中的瞄准点可以互相共享信息,增强局部搜索和全局搜索之间的平衡,并保持多样性。在仿真实验中,将毁伤评估模型的评估函数作为瞄准点选取好坏的评估函数,并且设计导弹打击地面目标的实例对瞄准点选择方法进行验证,实验结果表明,该方法求得的瞄准点具有较高的可信度,为火力筹划中瞄准点的寻优提供了新方法。展开更多
为了增强变压器故障诊断模型对不平衡样本的学习能力从而提高少数类故障样本的识别精度,提出了一种基于样本扩充和特征优选的融合多策略改进灰狼算法(improved grey wolf optimizer with multi-strategy,IGWO)优化支持向量机(support ve...为了增强变压器故障诊断模型对不平衡样本的学习能力从而提高少数类故障样本的识别精度,提出了一种基于样本扩充和特征优选的融合多策略改进灰狼算法(improved grey wolf optimizer with multi-strategy,IGWO)优化支持向量机(support vector machine,SVM)的变压器故障诊断技术。首先,使用基于K最近邻过采样方法及核密度估计自适应样本合成算法的混合过采样技术对少数类样本进行扩充得到均衡数据集,并在此基础上采用方差分析对变压器候选比值征兆进行特征优选。然后,通过改进灰狼优化算法(grey wolf optimizer,GWO)初始化策略、参数及位置更新公式,并引入差分进化策略调整种群,提出了融合多策略的改进灰狼算法。最后,构建了一种基于混合过采样技术的IGWO优化SVM的变压器故障诊断模型,并通过多组对比实验验证了所提方法能够有效增强模型对少数类故障样本的识别能力,并提升模型的整体分类性能。展开更多
基金National Natural Science Foundation of China(NSFC61773142,NSFC62303136)。
文摘When the maneuverability of a pursuer is not significantly higher than that of an evader,it will be difficult to intercept the evader with only one pursuer.Therefore,this article adopts a two-to-one differential game strategy,the game of kind is generally considered to be angle-optimized,which allows unlimited turns,but these practices do not take into account the effect of acceleration,which does not correspond to the actual situation,thus,based on the angle-optimized,the acceleration optimization and the acceleration upper bound constraint are added into the game for consideration.A two-to-one differential game problem is proposed in the three-dimensional space,and an improved multi-objective grey wolf optimization(IMOGWO)algorithm is proposed to solve the optimal game point of this problem.With the equations that describe the relative motions between the pursuers and the evader in the three-dimensional space,a multi-objective function with constraints is given as the performance index to design an optimal strategy for the differential game.Then the optimal game point is solved by using the IMOGWO algorithm.It is proved based on Markov chains that with the IMOGWO,the Pareto solution set is the solution of the differential game.Finally,it is verified through simulations that the pursuers can capture the escapee,and via comparative experiments,it is shown that the IMOGWO algorithm performs well in terms of running time and memory usage.
文摘针对导弹打击地面目标时的瞄准点优选问题,提出了一种利用改进灰狼优化算法(improved grey wolf op timization,IGWO)选取最优瞄准点的瞄准点选择方法。该算法基于维度学习的狩猎搜索策略(dimension learning-based hunting,DLH),为每个瞄准点构建相邻的瞄准点集合,集合中的瞄准点可以互相共享信息,增强局部搜索和全局搜索之间的平衡,并保持多样性。在仿真实验中,将毁伤评估模型的评估函数作为瞄准点选取好坏的评估函数,并且设计导弹打击地面目标的实例对瞄准点选择方法进行验证,实验结果表明,该方法求得的瞄准点具有较高的可信度,为火力筹划中瞄准点的寻优提供了新方法。
文摘为了增强变压器故障诊断模型对不平衡样本的学习能力从而提高少数类故障样本的识别精度,提出了一种基于样本扩充和特征优选的融合多策略改进灰狼算法(improved grey wolf optimizer with multi-strategy,IGWO)优化支持向量机(support vector machine,SVM)的变压器故障诊断技术。首先,使用基于K最近邻过采样方法及核密度估计自适应样本合成算法的混合过采样技术对少数类样本进行扩充得到均衡数据集,并在此基础上采用方差分析对变压器候选比值征兆进行特征优选。然后,通过改进灰狼优化算法(grey wolf optimizer,GWO)初始化策略、参数及位置更新公式,并引入差分进化策略调整种群,提出了融合多策略的改进灰狼算法。最后,构建了一种基于混合过采样技术的IGWO优化SVM的变压器故障诊断模型,并通过多组对比实验验证了所提方法能够有效增强模型对少数类故障样本的识别能力,并提升模型的整体分类性能。