OBJECTIVE Shenmai Injection(SMI)is widely used in the treatment of cardiovascular diseases,such as heart failure and myocardial ischemia.In clinic,SMI showed protective effects on doxorubicin(Dox)-induced cardiac toxi...OBJECTIVE Shenmai Injection(SMI)is widely used in the treatment of cardiovascular diseases,such as heart failure and myocardial ischemia.In clinic,SMI showed protective effects on doxorubicin(Dox)-induced cardiac toxicity.In current study,we investigate the mitochondrial protective mechanisms of SMI on Dox-induced myocardial injury.METHODS C57BL/6 mice were divided into four groups:①control group;②Dox injury group;③SMI+Dox group and dexrazoxane(DRZ)+Dox group.Dex was a positive control.Myocardial injury was evaluated by echocardiography,HE and TUNEL staining,myocardial markers measurement.H9C2 cardiomyocytes pretreatment with SMI for 24 h were exposed to Dox.Cell viability and apoptosis were measured by CCK8,Hoechst33342 staining,and Annexin V/PI staining.MitoSOX,mitochondrial membrane potential,and mitochondrial respiratory function were measured to evaluate mito⁃chondrial function.RESULTS SMI decreased mortality rate of Dox-injected mice,serum CK and CK-MB levels in vivo.SMI significantly prevented Dox-induced cardiac dysfunction and apoptosis and increased expression level of PI3K,p-Akt,and p-GSK-3β.Moreover,SMI significantly inhibited Dox-induced apoptosis,mitochondrial ROS production,and reduction of mitochondrial membrane potential in H9C2 cells.Mechanismly,the cardio-protective effect of SMI was suppressed by PI3K inhibitor LY294002.CONCLUSION SMI prevents Dox-induced cardiotoxicity and mitochondrial damage through activation of PI3K/Akt signaling pathway.展开更多
基金National Natural Science Foundation of China(8177401781202779+2 种基金81973624)Natural Science Foundation of Tianjin City(19JCYBJC28200)the Scientific Research Project of Tianjin Education Commission(2017KJ140)
文摘OBJECTIVE Shenmai Injection(SMI)is widely used in the treatment of cardiovascular diseases,such as heart failure and myocardial ischemia.In clinic,SMI showed protective effects on doxorubicin(Dox)-induced cardiac toxicity.In current study,we investigate the mitochondrial protective mechanisms of SMI on Dox-induced myocardial injury.METHODS C57BL/6 mice were divided into four groups:①control group;②Dox injury group;③SMI+Dox group and dexrazoxane(DRZ)+Dox group.Dex was a positive control.Myocardial injury was evaluated by echocardiography,HE and TUNEL staining,myocardial markers measurement.H9C2 cardiomyocytes pretreatment with SMI for 24 h were exposed to Dox.Cell viability and apoptosis were measured by CCK8,Hoechst33342 staining,and Annexin V/PI staining.MitoSOX,mitochondrial membrane potential,and mitochondrial respiratory function were measured to evaluate mito⁃chondrial function.RESULTS SMI decreased mortality rate of Dox-injected mice,serum CK and CK-MB levels in vivo.SMI significantly prevented Dox-induced cardiac dysfunction and apoptosis and increased expression level of PI3K,p-Akt,and p-GSK-3β.Moreover,SMI significantly inhibited Dox-induced apoptosis,mitochondrial ROS production,and reduction of mitochondrial membrane potential in H9C2 cells.Mechanismly,the cardio-protective effect of SMI was suppressed by PI3K inhibitor LY294002.CONCLUSION SMI prevents Dox-induced cardiotoxicity and mitochondrial damage through activation of PI3K/Akt signaling pathway.