Introduction Mechanotransduction has demonstrated potentials for tissue adaptation in vivo and in vitro. It is well documented that ultrasound,as a mechanical signal,can produce a wide variety of biological effects in...Introduction Mechanotransduction has demonstrated potentials for tissue adaptation in vivo and in vitro. It is well documented that ultrasound,as a mechanical signal,can produce a wide variety of biological effects in vitro and in vivo [1]. As an example,展开更多
Due to space constraints in mountainous areas,twin tunnels are sometimes constructed very close to each other or even overlap.This proximity challenges the structural stability of tunnels built with the drill-and-blas...Due to space constraints in mountainous areas,twin tunnels are sometimes constructed very close to each other or even overlap.This proximity challenges the structural stability of tunnels built with the drill-and-blast method,as the short propagation distance amplifies blasting vibrations.A case of blasting damage is reported in this paper,where concrete cracks crossed construction joints in the twin-arch lining.To identify the causes of these cracks and develop effective vibration mitigation measures,field monitoring and numerical analysis were conducted.Specifically,a restart method was used to simulate the second peak particle velocity(PPV)of MS3 delays occurring 50 ms after the MS1 delays.The study found that the dynamic tensile stress in the tunnel induced by the blast wave has a linear relationship with the of the product of the concrete wave impedance and the PPV.A blast vibration velocity exceeding 23.3 cm/s resulted in tensile stress in the lining surpassing the ultimate tensile strength of C30 concrete,leading to tensile cracking on the blast-facing arch of the constructed tunnel.To control excessive vi-bration velocity,a mitigation trench was implemented to reduce blast wave impact.The trench,approximately 15 m in length,50 cm in width,and 450 cm in height,effectively lowered vibration ve-locities,achieving an average reduction rate of 52%according to numerical analysis.A key innovation of this study is the on-site implementation and validation of the trench's effectiveness in mitigating vi-brations.A feasible trench construction configuration was proposed to overcome the limitations of a single trench in fully controlling vibrations.To further enhance protection,zoned blasting and an auxiliary rock pillar,80 cm in width,were incorporated to reinforce the mid-wall.This study introduces novel strategies for vibration protection in tunnel blasting,offering innovative solutions to address blasting-induced vibrations and effectively minimize their impact,thereby enhancing safety and struc-tural stability.展开更多
Mitigation effects of coenzyme Q10(CoQ10)on spiromesifen(SPM)-induced acute toxicity to zebrafish at different life stages,as well as abnormal development,especially impaired development of heart and notochord,oxidati...Mitigation effects of coenzyme Q10(CoQ10)on spiromesifen(SPM)-induced acute toxicity to zebrafish at different life stages,as well as abnormal development,especially impaired development of heart and notochord,oxidative stress and apoptosis in embryos were investigated using a semi-static method.Results showed that CoQ10 can remarkably reduce the acute toxicity of SPM to zebrafish embryos,larvae and adults by 3.20-,2.09-and 1.51-fold,respectively.CoQ10 can effectively alleviate the SPM-induced abnormal spontaneous movement,decreased heartbeat,delayed hatching,growth inhibition and various teratogenic effects of zebrafish embryos.At the stage of zebrafish embryo,CoQ10 significantly increases superoxide dismutase(SOD)activity and expression levels of genes related to anti-oxidation(Cat&Cu/Zn-sod),anti-apoptosis(mcl1a&mcl1b),heart development(cmlc1,actc1a&erbb4a)and angiogenesis(vegfaa,vegfd&kdrl),which are inhibited by SPM.Additionally,CoQ10 reduces malondialdehyde(MDA)content and caspase-3 activity of embryos,as well as expression levels of pro-apoptosis(Cas3,Cas9,P53&bax)and notochord(tbxta&col2a)related genes raised by SPM.The results indicate that CoQ10 can mitigate the acute toxicity of SPM to zebrafish,and alleviate the abnormal development of heart and notochord of embryos by reducing oxidative stress and apoptosis,as well as regulating the expression of related genes.展开更多
In recent years,explosion shock wave has been considered as a signature injury of the current military conflicts.Although strong shock wave is lethal to the human body,weak shock wave can cause many more lasting conse...In recent years,explosion shock wave has been considered as a signature injury of the current military conflicts.Although strong shock wave is lethal to the human body,weak shock wave can cause many more lasting consequences.To investigate the protection ability and characteristics of flexible materials and structures under weak shock wave loading,the blast wave produced by TNT explosive is loaded on the polyurethane foam with the density of 200.0 kg/m3(F-200)and 400.0 kg/m3(F-400),polyurea with the density of 1100.0 kg/m^(3)(P-1100)and structures composed of the two materials,which are intended for individual protection.Experimental results indicate that the shock wave is attenuated to weak pressure disturbance after interacting with the flexible materials which are not damaged.The shock wave protective capability of single-layer materials is dependent on their thickness,density and microscopic characteristics.The overpressure,maximum pressure rise rate and impulse of transmitted wave decrease exponentially with increase in sample thickness.For the same thickness,F-400 provides better protective capability than F-200 while P-1100 shows the best protective capability among the three materials.In this study,as the materials are not destroyed,F-200 with a thickness more than10.0 mm,F-400 with a thickness more than 4.0 mm,and P-1100 with a thickness more than 1.0 mm can attenuate the overpressure amplitude more than 90.0%.Further,multi-layer flexible composites are designed.Different layer layouts of designed structures and layer thickness of the single-layer materials can affect the protective performance.Within the research range,the structure in which polyurea is placed on the impact side shows the optimal shock wave protective performance,and the thicknesses of polyurea and polyurethane foam are 1.0 mm and 4.0 mm respectively.The overpressure attenuation rate reached maximum value of 93.3%and impulse attenuation capacity of this structure are better than those of single-layer polyurea and polyurethane foam with higher areal density.展开更多
This paper presents the networking observation capabilities of Chinese ocean satellites and their diverse applications in ocean disaster prevention,ecological monitoring,and resource development.Since the inaugural la...This paper presents the networking observation capabilities of Chinese ocean satellites and their diverse applications in ocean disaster prevention,ecological monitoring,and resource development.Since the inaugural launch in 2002,China has achieved substantial advancements in ocean satellite technology,forming an observation system composed of the HY-1,HY-2,and HY-3 series satellites.These satellites are integral to global ocean environmental monitoring due to their high resolution,extensive coverage,and frequent observations.Looking forward,China aims to further enhance and expand its ocean satellite capabilities through ongoing projects to support global environmental protection and sustainable development.展开更多
Seven in-situ tests were carried out in far field to study the blast mitigation effect of a kind of water filled plastic wall. Test results show that the mitigation effect of water filled plastic wall is remarkable. T...Seven in-situ tests were carried out in far field to study the blast mitigation effect of a kind of water filled plastic wall. Test results show that the mitigation effect of water filled plastic wall is remarkable. The maximum reduction of peak reflected overpressure reaches up to 94.53%, as well as 36.3% of the minimum peak reflected overpressure reduction in the scaled distance ranging from 1.71 m/kg1/3 to 3.42 m/kg1/3. Parametric studies were also carried out. The effects of the scaled gauge height, water/charge scaled distance(the distance between the explosive charge and the water wall), water wall scaled height and water/structure scaled distance(the distance between the water wall and the structure) were systematically investigated and compared with the usual rigid anti-blast wall. It is concluded that these parameters affect the mitigation effects of plastic water wall on blast loadings significantly, which is basically consistent to the trend of usual rigid anti-blast wall. Some formulae are also derived based on the numerical and test results, providing a simple but reliable prediction model to evaluate the peak overpressure of mitigated blast loadings on the structures.展开更多
An upsurge of terrorist activity has occurred in the past two decades. As part of this, explosive devices continue to be extensively deployed against civilians in wide-ranging environments. Bombings remain the leading...An upsurge of terrorist activity has occurred in the past two decades. As part of this, explosive devices continue to be extensively deployed against civilians in wide-ranging environments. Bombings remain the leading worldwide cause of civilian fatalities due to terrorism. This demands an understanding of modern terrorist bombing trends to inform mitigation strategy. The objective of this study was to identify the occurrence and severity of bombings against civilian targets in diverse attack settings, and to establish corresponding blast injury profiles. Data was obtained from analysis of the Global Terrorism Database(GTD) and a meta-analysis of blast injury data derived from the PubMed database. Closed environment explosions were associated with significantly greater(p<0.05) mortality than in open spaces. The injury profiles were found to be influenced by attack setting, with higher rates of primary injury on trains and buses, and secondary injury in open space.展开更多
The present experimental study investigates shock wave mitigation capability of potentially new personal protective equipment(PPE) suspension pads made from polyurea and shear thickening fluid(STF).The shock tube test...The present experimental study investigates shock wave mitigation capability of potentially new personal protective equipment(PPE) suspension pads made from polyurea and shear thickening fluid(STF).The shock tube test results show that when placed behind Twaron fabric systems with thickness ranging from 2 mm to 18 mm, the replacement of conventional flexible foam pad with STF and STF-infused foam pads with the same thickness of 20 mm greatly reduces the normalized peak pressure(by about 72% for each pad). However, this benefit is partially offset by a large increase in the normalized impulse(by about78% for the STF pad and 131% for the STF-infused foam pad) which may cause the shock wave mitigation performance of these two pads to become less effective. Interestingly, the use of 4 mm thick polyurea pad can greatly reduce the normalized peak pressure and impulse as well(by about 74% and 49%, respectively). These results reveal that among the potentially new suspension pads tested, the polyurea pad displays the best shock wave mitigation performance. Therefore, polyurea has potential for use as a suspension pad in personal protective equipment requiring shock wave mitigation capability such as fabric ballistic vests, bomb suits and combat helmets.展开更多
The effects of a fine water mist environment in a semi-confined blast chamber on the chemical and thermodynamic processes following detonation of a 20 g PE4 explosive charge have been investigated.The effects were qua...The effects of a fine water mist environment in a semi-confined blast chamber on the chemical and thermodynamic processes following detonation of a 20 g PE4 explosive charge have been investigated.The effects were quantified by the analysis of pressure profiles recorded where several parameters including arrival time of the shock at the sensors, peak overpressures, specific impulse of the positive phase, period of the negative phase and the specific impulse of the multiple reflections were quantified.The effect of the fine water mist on the arrival time, peak pressures and the specific impulse of the positive phase agrees with previous findings in literature. In this paper, the focus is on the implications of the fine water mist on the negative phase and the impulse of multiple pressure reflections. The period of the negative phase was found to have increased by 40% and with higher negative peak pressure in the mist condition compared to the atmospheric condition. The activities of the multiple pressure reflections were found to have decreased considerably, both in number and in amplitude leading to lower impulses(by about 60%) for the water mist conditions.展开更多
The mitigation of blast shock with water has broad application prospects. Understanding the mitigation effects on the reflected overpressure of the explosion shock with water surrounding an explosive in a confined spa...The mitigation of blast shock with water has broad application prospects. Understanding the mitigation effects on the reflected overpressure of the explosion shock with water surrounding an explosive in a confined space is of great significance for military explosives safety applications. To estimate the effects of the parameters on the reflected overpressure of blasted shock wave, a series of experiments were carried out in confined containers with spherical explosives immersed in a certain thickness of water,and numerical simulations were conducted to explore the corresponding mechanisms. The results reveal that the reflected overpressure is abnormally aggravated at a small scaled distance. This aggravation is due to the high impulse of the bulk accelerated water shell converted from the explosion. With increasing scaled distance, the energy will be gradually dissipated. The mitigation effects will appear with the dispersed water phase front impacting at a larger scaled distance, except in the case of a dense water phase state. A critical scaled distance range of 0.7-0.8 m/kg^(1/3) for effective mitigation was found. It is suggested that the scaled distance of space walls should be larger than the critical value for a certain water-to-explosive weight ratio range(5-20).展开更多
Core discing often occurs in deep rocks under high-stress conditions and has been identified as an important characteristic for deep rock engineering.This paper presents the formation mechanism of core discing firstly...Core discing often occurs in deep rocks under high-stress conditions and has been identified as an important characteristic for deep rock engineering.This paper presents the formation mechanism of core discing firstly.Then,the interaction between diamond drill bits and rock was analyzed based on numerical modeling.A novel drill bit with an inner conical crown for the mitigation of core discing was designed and verified by simulation experiments.The mitigation method was applied in the cavern B1 of CJPL-Ⅱand satisfactory results had been achieved.The percentage of core discing had been obviously decreased from 67.8%when drilling with a rectangular crown drill bit,to 26.5%when an inner conical crown drill bit had been adopted.This paper gives full insight into core discing characteristics and provides a new method for core discing mitigation;it will potentially contribute to stress measurement in deep rock engineering.展开更多
The GPS multipath signal model is presented, which indicates that the coherent DLL outputs in multipath environment are the convolution between the ideal DLL outputs and the channel responses. So the channel responses...The GPS multipath signal model is presented, which indicates that the coherent DLL outputs in multipath environment are the convolution between the ideal DLL outputs and the channel responses. So the channel responses can be estimated by a least square method using the observed curve of the DLL discriminator. In terms of the estimated multipath channels, two multipath mitigation methods are discussed, which are equalization filtering and multipath subtracting, respectively. It is shown, by computer simulation, that the least square method has a good performance in channels estimation and the multipath errors can be mitigated almost completely by either of the methods. However, the multipath subtracting method has relative small remnant errors than equalization filtering.展开更多
In ultra-wideband through-wall-imaging applications, wall clutters are always much stronger than the target reflections, and they tend to persist over a long period of time. As a result, targets are obscured and not v...In ultra-wideband through-wall-imaging applications, wall clutters are always much stronger than the target reflections, and they tend to persist over a long period of time. As a result, targets are obscured and not visible in the image. In this work, an antenna planes-based wall clutter mitigation method was proposed. By using two imaging procedures in different scanning planes, this method can mitigate the wall clutter in both SAR and MIMO modes. The proposed method was tested using EM numerical data via the FDTD method. The processing results show that the imaging quality is improved significantly.展开更多
Recent researches focused on developing robust blast load mitigation systems due to the threats of terrorist attacks.One of the main embraced strategies is the structural systems that use mitigation techniques.They ar...Recent researches focused on developing robust blast load mitigation systems due to the threats of terrorist attacks.One of the main embraced strategies is the structural systems that use mitigation techniques.They are developed from a combination of structural elements and described herein as conventional systems.Among the promising techniques is that redirect the waves propagation through hollow tubes.The blast wave propagation through tubes provides an efficient system since it combines many blast wave phenomena,such as reflection,diffraction,and interaction.In this research,a novel blast load mitigation system,employed as a protection fence,is developed using a technique similar to the technique of the bent tube in manipulating the shock-wave.The relative performance of the novel system to the conventional system is evaluated based on mitigation percent criteria.Performances of both systems are calculated through numerical simulation.The proposed novel system proved to satisfy high performance in mitigating the generated blast waves from charges weight up to 500 kg TNT at relatively small standoff distances(5 m and 8 m).It mitigates at least 94%of the blast waves,which means that only 6%of that blast impulse is considered as the applied load on the targeted structure.展开更多
Climate change is increasingly becoming the hotspot issue of global attention. On the basis of review of the process responding to climate change of international community, this paper introduces the status of carbon ...Climate change is increasingly becoming the hotspot issue of global attention. On the basis of review of the process responding to climate change of international community, this paper introduces the status of carbon emissions of the world and China, and the technology potential for China to mitigate carbon emissions. At the same time, this paper explores the macro-impacts of China's mitigation of carbon emissions, the equity of global mitigation of climate change, and the impacts of international cooperation in the field of climate change. Furthermore, this paper puts forward the ideas and countermeasures of mitigating climate change in China, indicating that China should positively adapt to the trends of international politics, economy and trade pattern changes and bring the strategies of mitigating climate change into national social and economic development strategy, planning to promote comprehensive, coordinated and sustainable development of national economy and society under the situation of global response to climate change.展开更多
This paper presents a view of some of the challenges that are presented in investigating protection methodologies against explosive blast effects. In particular, the paper is concerned with experimental efforts that c...This paper presents a view of some of the challenges that are presented in investigating protection methodologies against explosive blast effects. In particular, the paper is concerned with experimental efforts that can aid in the understanding of complex blast effects in typical real world scenarios. Current progress in the implementation of blast mitigation methodologies in the landward defence environment is reviewed.展开更多
The present study focuses on the mitigation of shock wave using novel geometric passages in the flow field.The strategy is to produce multiple shock reflections and diffractions in the passage with minimum flow obstru...The present study focuses on the mitigation of shock wave using novel geometric passages in the flow field.The strategy is to produce multiple shock reflections and diffractions in the passage with minimum flow obstruction,which in turn is expected to reduce the shock wave strength at the target location.In the present study the interaction of a plane shock front(generated from a shock tube)with various geometric designs such as,1)zig-zag geometric passage,2)staggered cylindrical obstructions and 3)zigzag passage with cylindrical obstructions have been investigated using computational technique.It is seen from the numerical simulation that,among the various designs,the maximum shock attenuation is produced by the zig-zag passage with cylindrical obstructions which is then followed by zig-zag passage and staggered cylindrical obstructions.A comprehensive investigation on the shock wave reflection and diffraction phenomena happening in the proposed complex passages have also been carried out.In the new zig-zag design,the initial shock wave undergoes shock wave reflection and diffraction process which swaps alternatively as the shock front moves from one turn to the other turn.This cyclic shock reflection and diffraction process helps in diffusing the shock wave energy with practically no obstruction to the flow field.It is found that by combining the shock attenuation ability of zig-zag passage(using shock reflection and diffraction)with the shock attenuation ability of cylindrical blocks(by flow obstruction),a drastic attenuation in shock strength can be achieved with moderate level of flow blocking.展开更多
The rapid increase of space debris population has posed serious threaten to the safety of human space activities and became a global issue.How to enhance the technical capabilities of space debris threat coping abilit...The rapid increase of space debris population has posed serious threaten to the safety of human space activities and became a global issue.How to enhance the technical capabilities of space debris threat coping ability is of great significance to the sustainable development of space activities,the further development,and utilization of outer space.In this paper,we describe space debris research progress of China on observation,collision avoidance,protection,mitigation,regulation,and standard during the last twenty years,and look forward to the future development direction of space debris.展开更多
Radio environment degrades significantly at Nan Shan 26 m Radio Telescope(NSRT) base due to new and upgraded electrical devices on-site and more establishment of surrounding radio communication services. How do we mit...Radio environment degrades significantly at Nan Shan 26 m Radio Telescope(NSRT) base due to new and upgraded electrical devices on-site and more establishment of surrounding radio communication services. How do we mitigate them effectively? Firstly, a quasi-real time Radio Frequency Interference(RFI) measurement method is employed for RFI detection and spectral analysis based on the layout for potential on-site interference areas and off-site radio communication services. Our investigation at the frequency bands for pulsar observations(1380–1700 MHz) indicates that transient interferences pose the greatest impact on observations. Then we use a portable RFI measurement system for interferences hunting at the NSRT, and the typical characteristics of interferences are analyzed. Secondly, based on the RFI characteristics, main interference sources in the observation room are shielded with shielding cabinets. The results from our shielding efficiency(SE) measurement and evaluation show that these methods work effectively.Furthermore, we propose a Radio Quiet Zone(RQZ) and the regulations for NSRT to mitigate off-site RFIs.展开更多
The Al and La elements are added to the Sn9Zn alloy to obtain the fusible alloy for the mitigation devices of solid propellant rocket motors. Differential scanning calorimetry(DSC), metallographic analysis,scanning el...The Al and La elements are added to the Sn9Zn alloy to obtain the fusible alloy for the mitigation devices of solid propellant rocket motors. Differential scanning calorimetry(DSC), metallographic analysis,scanning electron microscopy(SEM), energy dispersive spectroscopy(EDS), tensile testing and fracture analysis were used to study the effect of Al and La elements on the microstructure, melting characteristics, and mechanical properties of the Sn9Zn alloy. Whether the fusible diaphragm can effectively relieve pressure was investigated by the hydrostatic pressure at high-temperature test. Experimental results show that the melting point of the Sn9Zn-0.8Al0·2La and Sn9Zn-3Al0·2La fusible alloys can meet the predetermined working temperature of ventilation. The mechanical properties of those are more than 35% higher than that of the Sn9Zn alloy at-50°C-70°C, and the mechanical strength is reduced by 80% at 175°C. It is proven by the hydrostatic pressure at high-temperature test that the fusible diaphragm can relieve pressure effectively and can be used for the design of the mitigation devices of solid propellant rocket motors.展开更多
基金supported by the NIH (R01 AR52379 & R01 AR49286),U S Army Medical Research and NSBRI
文摘Introduction Mechanotransduction has demonstrated potentials for tissue adaptation in vivo and in vitro. It is well documented that ultrasound,as a mechanical signal,can produce a wide variety of biological effects in vitro and in vivo [1]. As an example,
基金supported by the Shenzhen Stability Support Plan(Grant No.20231122095154003)National Natural Science Foundation of China(Grant Nos.51978671 and 52378425)Guizhou Provincial Department of Transportation Science and Technology Program(Grant No.2023-122-003)。
文摘Due to space constraints in mountainous areas,twin tunnels are sometimes constructed very close to each other or even overlap.This proximity challenges the structural stability of tunnels built with the drill-and-blast method,as the short propagation distance amplifies blasting vibrations.A case of blasting damage is reported in this paper,where concrete cracks crossed construction joints in the twin-arch lining.To identify the causes of these cracks and develop effective vibration mitigation measures,field monitoring and numerical analysis were conducted.Specifically,a restart method was used to simulate the second peak particle velocity(PPV)of MS3 delays occurring 50 ms after the MS1 delays.The study found that the dynamic tensile stress in the tunnel induced by the blast wave has a linear relationship with the of the product of the concrete wave impedance and the PPV.A blast vibration velocity exceeding 23.3 cm/s resulted in tensile stress in the lining surpassing the ultimate tensile strength of C30 concrete,leading to tensile cracking on the blast-facing arch of the constructed tunnel.To control excessive vi-bration velocity,a mitigation trench was implemented to reduce blast wave impact.The trench,approximately 15 m in length,50 cm in width,and 450 cm in height,effectively lowered vibration ve-locities,achieving an average reduction rate of 52%according to numerical analysis.A key innovation of this study is the on-site implementation and validation of the trench's effectiveness in mitigating vi-brations.A feasible trench construction configuration was proposed to overcome the limitations of a single trench in fully controlling vibrations.To further enhance protection,zoned blasting and an auxiliary rock pillar,80 cm in width,were incorporated to reinforce the mid-wall.This study introduces novel strategies for vibration protection in tunnel blasting,offering innovative solutions to address blasting-induced vibrations and effectively minimize their impact,thereby enhancing safety and struc-tural stability.
基金Supported by National Key Research and Development Program of China(No.2017YFD0200504)。
文摘Mitigation effects of coenzyme Q10(CoQ10)on spiromesifen(SPM)-induced acute toxicity to zebrafish at different life stages,as well as abnormal development,especially impaired development of heart and notochord,oxidative stress and apoptosis in embryos were investigated using a semi-static method.Results showed that CoQ10 can remarkably reduce the acute toxicity of SPM to zebrafish embryos,larvae and adults by 3.20-,2.09-and 1.51-fold,respectively.CoQ10 can effectively alleviate the SPM-induced abnormal spontaneous movement,decreased heartbeat,delayed hatching,growth inhibition and various teratogenic effects of zebrafish embryos.At the stage of zebrafish embryo,CoQ10 significantly increases superoxide dismutase(SOD)activity and expression levels of genes related to anti-oxidation(Cat&Cu/Zn-sod),anti-apoptosis(mcl1a&mcl1b),heart development(cmlc1,actc1a&erbb4a)and angiogenesis(vegfaa,vegfd&kdrl),which are inhibited by SPM.Additionally,CoQ10 reduces malondialdehyde(MDA)content and caspase-3 activity of embryos,as well as expression levels of pro-apoptosis(Cas3,Cas9,P53&bax)and notochord(tbxta&col2a)related genes raised by SPM.The results indicate that CoQ10 can mitigate the acute toxicity of SPM to zebrafish,and alleviate the abnormal development of heart and notochord of embryos by reducing oxidative stress and apoptosis,as well as regulating the expression of related genes.
基金supported by the National Natural Science Foundation of China(Grant Nos.12221002,12102233)。
文摘In recent years,explosion shock wave has been considered as a signature injury of the current military conflicts.Although strong shock wave is lethal to the human body,weak shock wave can cause many more lasting consequences.To investigate the protection ability and characteristics of flexible materials and structures under weak shock wave loading,the blast wave produced by TNT explosive is loaded on the polyurethane foam with the density of 200.0 kg/m3(F-200)and 400.0 kg/m3(F-400),polyurea with the density of 1100.0 kg/m^(3)(P-1100)and structures composed of the two materials,which are intended for individual protection.Experimental results indicate that the shock wave is attenuated to weak pressure disturbance after interacting with the flexible materials which are not damaged.The shock wave protective capability of single-layer materials is dependent on their thickness,density and microscopic characteristics.The overpressure,maximum pressure rise rate and impulse of transmitted wave decrease exponentially with increase in sample thickness.For the same thickness,F-400 provides better protective capability than F-200 while P-1100 shows the best protective capability among the three materials.In this study,as the materials are not destroyed,F-200 with a thickness more than10.0 mm,F-400 with a thickness more than 4.0 mm,and P-1100 with a thickness more than 1.0 mm can attenuate the overpressure amplitude more than 90.0%.Further,multi-layer flexible composites are designed.Different layer layouts of designed structures and layer thickness of the single-layer materials can affect the protective performance.Within the research range,the structure in which polyurea is placed on the impact side shows the optimal shock wave protective performance,and the thicknesses of polyurea and polyurethane foam are 1.0 mm and 4.0 mm respectively.The overpressure attenuation rate reached maximum value of 93.3%and impulse attenuation capacity of this structure are better than those of single-layer polyurea and polyurethane foam with higher areal density.
基金Supported by Remote Sensing Support for Offshore Ocean Environment and Polar Sea Ice Early Warning Services(102121201550000009004)。
文摘This paper presents the networking observation capabilities of Chinese ocean satellites and their diverse applications in ocean disaster prevention,ecological monitoring,and resource development.Since the inaugural launch in 2002,China has achieved substantial advancements in ocean satellite technology,forming an observation system composed of the HY-1,HY-2,and HY-3 series satellites.These satellites are integral to global ocean environmental monitoring due to their high resolution,extensive coverage,and frequent observations.Looking forward,China aims to further enhance and expand its ocean satellite capabilities through ongoing projects to support global environmental protection and sustainable development.
基金Projects(2015CB058003,2012CB026204)supported by the National Basic Research Program of ChinaProjects(51238007,51210012)supported by the National Natural Science Foundation of China
文摘Seven in-situ tests were carried out in far field to study the blast mitigation effect of a kind of water filled plastic wall. Test results show that the mitigation effect of water filled plastic wall is remarkable. The maximum reduction of peak reflected overpressure reaches up to 94.53%, as well as 36.3% of the minimum peak reflected overpressure reduction in the scaled distance ranging from 1.71 m/kg1/3 to 3.42 m/kg1/3. Parametric studies were also carried out. The effects of the scaled gauge height, water/charge scaled distance(the distance between the explosive charge and the water wall), water wall scaled height and water/structure scaled distance(the distance between the water wall and the structure) were systematically investigated and compared with the usual rigid anti-blast wall. It is concluded that these parameters affect the mitigation effects of plastic water wall on blast loadings significantly, which is basically consistent to the trend of usual rigid anti-blast wall. Some formulae are also derived based on the numerical and test results, providing a simple but reliable prediction model to evaluate the peak overpressure of mitigated blast loadings on the structures.
基金support of the Institute for Security Science and TechnologyThe Royal British Legion Centre for Blast Injury Studies at Imperial College LondonThe Institute of Shock Physics also acknowledges the support of Imperial College London
文摘An upsurge of terrorist activity has occurred in the past two decades. As part of this, explosive devices continue to be extensively deployed against civilians in wide-ranging environments. Bombings remain the leading worldwide cause of civilian fatalities due to terrorism. This demands an understanding of modern terrorist bombing trends to inform mitigation strategy. The objective of this study was to identify the occurrence and severity of bombings against civilian targets in diverse attack settings, and to establish corresponding blast injury profiles. Data was obtained from analysis of the Global Terrorism Database(GTD) and a meta-analysis of blast injury data derived from the PubMed database. Closed environment explosions were associated with significantly greater(p<0.05) mortality than in open spaces. The injury profiles were found to be influenced by attack setting, with higher rates of primary injury on trains and buses, and secondary injury in open space.
基金supported by the Ministry of Education,Singapore(R265000533112)
文摘The present experimental study investigates shock wave mitigation capability of potentially new personal protective equipment(PPE) suspension pads made from polyurea and shear thickening fluid(STF).The shock tube test results show that when placed behind Twaron fabric systems with thickness ranging from 2 mm to 18 mm, the replacement of conventional flexible foam pad with STF and STF-infused foam pads with the same thickness of 20 mm greatly reduces the normalized peak pressure(by about 72% for each pad). However, this benefit is partially offset by a large increase in the normalized impulse(by about78% for the STF pad and 131% for the STF-infused foam pad) which may cause the shock wave mitigation performance of these two pads to become less effective. Interestingly, the use of 4 mm thick polyurea pad can greatly reduce the normalized peak pressure and impulse as well(by about 74% and 49%, respectively). These results reveal that among the potentially new suspension pads tested, the polyurea pad displays the best shock wave mitigation performance. Therefore, polyurea has potential for use as a suspension pad in personal protective equipment requiring shock wave mitigation capability such as fabric ballistic vests, bomb suits and combat helmets.
文摘The effects of a fine water mist environment in a semi-confined blast chamber on the chemical and thermodynamic processes following detonation of a 20 g PE4 explosive charge have been investigated.The effects were quantified by the analysis of pressure profiles recorded where several parameters including arrival time of the shock at the sensors, peak overpressures, specific impulse of the positive phase, period of the negative phase and the specific impulse of the multiple reflections were quantified.The effect of the fine water mist on the arrival time, peak pressures and the specific impulse of the positive phase agrees with previous findings in literature. In this paper, the focus is on the implications of the fine water mist on the negative phase and the impulse of multiple pressure reflections. The period of the negative phase was found to have increased by 40% and with higher negative peak pressure in the mist condition compared to the atmospheric condition. The activities of the multiple pressure reflections were found to have decreased considerably, both in number and in amplitude leading to lower impulses(by about 60%) for the water mist conditions.
基金funded by National Natural Science Foundation of China, grant ID: 11172245。
文摘The mitigation of blast shock with water has broad application prospects. Understanding the mitigation effects on the reflected overpressure of the explosion shock with water surrounding an explosive in a confined space is of great significance for military explosives safety applications. To estimate the effects of the parameters on the reflected overpressure of blasted shock wave, a series of experiments were carried out in confined containers with spherical explosives immersed in a certain thickness of water,and numerical simulations were conducted to explore the corresponding mechanisms. The results reveal that the reflected overpressure is abnormally aggravated at a small scaled distance. This aggravation is due to the high impulse of the bulk accelerated water shell converted from the explosion. With increasing scaled distance, the energy will be gradually dissipated. The mitigation effects will appear with the dispersed water phase front impacting at a larger scaled distance, except in the case of a dense water phase state. A critical scaled distance range of 0.7-0.8 m/kg^(1/3) for effective mitigation was found. It is suggested that the scaled distance of space walls should be larger than the critical value for a certain water-to-explosive weight ratio range(5-20).
基金Projects(U1765206,51979268,51621006)supported by the National Natural Science Foundation of China。
文摘Core discing often occurs in deep rocks under high-stress conditions and has been identified as an important characteristic for deep rock engineering.This paper presents the formation mechanism of core discing firstly.Then,the interaction between diamond drill bits and rock was analyzed based on numerical modeling.A novel drill bit with an inner conical crown for the mitigation of core discing was designed and verified by simulation experiments.The mitigation method was applied in the cavern B1 of CJPL-Ⅱand satisfactory results had been achieved.The percentage of core discing had been obviously decreased from 67.8%when drilling with a rectangular crown drill bit,to 26.5%when an inner conical crown drill bit had been adopted.This paper gives full insight into core discing characteristics and provides a new method for core discing mitigation;it will potentially contribute to stress measurement in deep rock engineering.
文摘The GPS multipath signal model is presented, which indicates that the coherent DLL outputs in multipath environment are the convolution between the ideal DLL outputs and the channel responses. So the channel responses can be estimated by a least square method using the observed curve of the DLL discriminator. In terms of the estimated multipath channels, two multipath mitigation methods are discussed, which are equalization filtering and multipath subtracting, respectively. It is shown, by computer simulation, that the least square method has a good performance in channels estimation and the multipath errors can be mitigated almost completely by either of the methods. However, the multipath subtracting method has relative small remnant errors than equalization filtering.
基金Projects(61372161,61271441)supported by the National Natural Science Foundation of China
文摘In ultra-wideband through-wall-imaging applications, wall clutters are always much stronger than the target reflections, and they tend to persist over a long period of time. As a result, targets are obscured and not visible in the image. In this work, an antenna planes-based wall clutter mitigation method was proposed. By using two imaging procedures in different scanning planes, this method can mitigate the wall clutter in both SAR and MIMO modes. The proposed method was tested using EM numerical data via the FDTD method. The processing results show that the imaging quality is improved significantly.
文摘Recent researches focused on developing robust blast load mitigation systems due to the threats of terrorist attacks.One of the main embraced strategies is the structural systems that use mitigation techniques.They are developed from a combination of structural elements and described herein as conventional systems.Among the promising techniques is that redirect the waves propagation through hollow tubes.The blast wave propagation through tubes provides an efficient system since it combines many blast wave phenomena,such as reflection,diffraction,and interaction.In this research,a novel blast load mitigation system,employed as a protection fence,is developed using a technique similar to the technique of the bent tube in manipulating the shock-wave.The relative performance of the novel system to the conventional system is evaluated based on mitigation percent criteria.Performances of both systems are calculated through numerical simulation.The proposed novel system proved to satisfy high performance in mitigating the generated blast waves from charges weight up to 500 kg TNT at relatively small standoff distances(5 m and 8 m).It mitigates at least 94%of the blast waves,which means that only 6%of that blast impulse is considered as the applied load on the targeted structure.
文摘Climate change is increasingly becoming the hotspot issue of global attention. On the basis of review of the process responding to climate change of international community, this paper introduces the status of carbon emissions of the world and China, and the technology potential for China to mitigate carbon emissions. At the same time, this paper explores the macro-impacts of China's mitigation of carbon emissions, the equity of global mitigation of climate change, and the impacts of international cooperation in the field of climate change. Furthermore, this paper puts forward the ideas and countermeasures of mitigating climate change in China, indicating that China should positively adapt to the trends of international politics, economy and trade pattern changes and bring the strategies of mitigating climate change into national social and economic development strategy, planning to promote comprehensive, coordinated and sustainable development of national economy and society under the situation of global response to climate change.
基金The defence research and development board is acknowledged for funding research efforts
文摘This paper presents a view of some of the challenges that are presented in investigating protection methodologies against explosive blast effects. In particular, the paper is concerned with experimental efforts that can aid in the understanding of complex blast effects in typical real world scenarios. Current progress in the implementation of blast mitigation methodologies in the landward defence environment is reviewed.
文摘The present study focuses on the mitigation of shock wave using novel geometric passages in the flow field.The strategy is to produce multiple shock reflections and diffractions in the passage with minimum flow obstruction,which in turn is expected to reduce the shock wave strength at the target location.In the present study the interaction of a plane shock front(generated from a shock tube)with various geometric designs such as,1)zig-zag geometric passage,2)staggered cylindrical obstructions and 3)zigzag passage with cylindrical obstructions have been investigated using computational technique.It is seen from the numerical simulation that,among the various designs,the maximum shock attenuation is produced by the zig-zag passage with cylindrical obstructions which is then followed by zig-zag passage and staggered cylindrical obstructions.A comprehensive investigation on the shock wave reflection and diffraction phenomena happening in the proposed complex passages have also been carried out.In the new zig-zag design,the initial shock wave undergoes shock wave reflection and diffraction process which swaps alternatively as the shock front moves from one turn to the other turn.This cyclic shock reflection and diffraction process helps in diffusing the shock wave energy with practically no obstruction to the flow field.It is found that by combining the shock attenuation ability of zig-zag passage(using shock reflection and diffraction)with the shock attenuation ability of cylindrical blocks(by flow obstruction),a drastic attenuation in shock strength can be achieved with moderate level of flow blocking.
文摘The rapid increase of space debris population has posed serious threaten to the safety of human space activities and became a global issue.How to enhance the technical capabilities of space debris threat coping ability is of great significance to the sustainable development of space activities,the further development,and utilization of outer space.In this paper,we describe space debris research progress of China on observation,collision avoidance,protection,mitigation,regulation,and standard during the last twenty years,and look forward to the future development direction of space debris.
基金Supported by Chinese Academy of Sciences(CAS)“Light of West China” ProgramThe National Natural Science Foundation(11973077,11473061)The Operation,Maintenance and Upgrading Fund for Astronomical Telescopes and Facility Instruments,budgeted from the Ministry of Finance of China(MOF)and administrated by the CAS
文摘Radio environment degrades significantly at Nan Shan 26 m Radio Telescope(NSRT) base due to new and upgraded electrical devices on-site and more establishment of surrounding radio communication services. How do we mitigate them effectively? Firstly, a quasi-real time Radio Frequency Interference(RFI) measurement method is employed for RFI detection and spectral analysis based on the layout for potential on-site interference areas and off-site radio communication services. Our investigation at the frequency bands for pulsar observations(1380–1700 MHz) indicates that transient interferences pose the greatest impact on observations. Then we use a portable RFI measurement system for interferences hunting at the NSRT, and the typical characteristics of interferences are analyzed. Secondly, based on the RFI characteristics, main interference sources in the observation room are shielded with shielding cabinets. The results from our shielding efficiency(SE) measurement and evaluation show that these methods work effectively.Furthermore, we propose a Radio Quiet Zone(RQZ) and the regulations for NSRT to mitigate off-site RFIs.
基金the National Natural Science Foundation of China (Grant No. 11772058)。
文摘The Al and La elements are added to the Sn9Zn alloy to obtain the fusible alloy for the mitigation devices of solid propellant rocket motors. Differential scanning calorimetry(DSC), metallographic analysis,scanning electron microscopy(SEM), energy dispersive spectroscopy(EDS), tensile testing and fracture analysis were used to study the effect of Al and La elements on the microstructure, melting characteristics, and mechanical properties of the Sn9Zn alloy. Whether the fusible diaphragm can effectively relieve pressure was investigated by the hydrostatic pressure at high-temperature test. Experimental results show that the melting point of the Sn9Zn-0.8Al0·2La and Sn9Zn-3Al0·2La fusible alloys can meet the predetermined working temperature of ventilation. The mechanical properties of those are more than 35% higher than that of the Sn9Zn alloy at-50°C-70°C, and the mechanical strength is reduced by 80% at 175°C. It is proven by the hydrostatic pressure at high-temperature test that the fusible diaphragm can relieve pressure effectively and can be used for the design of the mitigation devices of solid propellant rocket motors.