期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
基于稀疏迭代协方差估计的缺失数据谱分析及时域重建方法 被引量:24
1
作者 马俊涛 高梅国 董健 《电子与信息学报》 EI CSCD 北大核心 2016年第6期1431-1437,共7页
应用于缺失数据恢复的迭代自适应方法(IAA)被证实可利用20%的有效数据估计信号参数,并能高精度恢复缺失数据,优于经典GAPES方法,但当缺失数据超过80%时其数据恢复性能迅速下降。该文基于稀疏迭代协方差估计提出一种新的缺失数据谱分析方... 应用于缺失数据恢复的迭代自适应方法(IAA)被证实可利用20%的有效数据估计信号参数,并能高精度恢复缺失数据,优于经典GAPES方法,但当缺失数据超过80%时其数据恢复性能迅速下降。该文基于稀疏迭代协方差估计提出一种新的缺失数据谱分析方法(M-SPICE)及针对该方法的缺失数据修正时域重建方法。该方法将加权缺失数据协方差拟合代价函数转换为凸优化问题,构造循环最小化器保证缺失数据参数估计的全局收敛特性,通过对缺失数据估计算子的更新实现了时域重建方法的修正,使其在有效数据功率谱欠估计的情况下获得更高的数据重建精度。仿真实验表明无论是数据块缺失还是任意缺失,该方法均能够利用更少的有效数据进行谱分析,并重建大比例缺失数据。 展开更多
关键词 缺失数据重建 谱估计 迭代自适应 稀疏协方差估计
在线阅读 下载PDF
数据缺失情况下基于M⁃SPICE的低空风切变风速估计方法
2
作者 李海 许婷 +1 位作者 严忠平 张强 《雷达科学与技术》 北大核心 2023年第5期473-481,488,共10页
针对机载气象雷达回波数据缺失的情况下,低空风切变风速估计失准这一问题,本文提出了一种基于缺失数据稀疏迭代协方差估计(Missing Sparse Iterative Covariance-based Estimation,M-SPICE)的低空风切变风速估计方法。该方法首先构造数... 针对机载气象雷达回波数据缺失的情况下,低空风切变风速估计失准这一问题,本文提出了一种基于缺失数据稀疏迭代协方差估计(Missing Sparse Iterative Covariance-based Estimation,M-SPICE)的低空风切变风速估计方法。该方法首先构造数据缺失模型,然后根据协方差拟合准则计算估计算子,并不断迭代更新得到最终所需的估计算子,进而恢复得到缺失的风切变数据,最后将恢复得到的数据重构得到完整的风切变数据,实现对风场速度的准确估计。仿真结果表明,该方法能够有效实现缺失数据的重建并精确地估计风速。 展开更多
关键词 机载气象雷达 缺失数据稀疏迭代协方差估计 低空风切变 风速估计
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部