期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
New normalized LMS adaptive filter with a variable regularization factor 被引量:9
1
作者 LI Zhoufan LI Dan +1 位作者 XU Xinlong ZHANG Jianqiu 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2019年第2期259-269,共11页
A new normalized least mean square(NLMS) adaptive filter is first derived from a cost function, which incorporates the conventional one of the NLMS with a minimum-disturbance(MD)constraint. A variable regularization f... A new normalized least mean square(NLMS) adaptive filter is first derived from a cost function, which incorporates the conventional one of the NLMS with a minimum-disturbance(MD)constraint. A variable regularization factor(RF) is then employed to control the contribution made by the MD constraint in the cost function. Analysis results show that the RF can be taken as a combination of the step size and regularization parameter in the conventional NLMS. This implies that these parameters can be jointly controlled by simply tuning the RF as the proposed algorithm does. It also demonstrates that the RF can accelerate the convergence rate of the proposed algorithm and its optimal value can be obtained by minimizing the squared noise-free posteriori error. A method for automatically determining the value of the RF is also presented, which is free of any prior knowledge of the noise. While simulation results verify the analytical ones, it is also illustrated that the performance of the proposed algorithm is superior to the state-of-art ones in both the steady-state misalignment and the convergence rate. A novel algorithm is proposed to solve some problems. Simulation results show the effectiveness of the proposed algorithm. 展开更多
关键词 adaptive filtering normalized least mean SQUARE (NLMS) minimum-disturbance (MD) constraint VARIABLE REGULARIZATION VARIABLE STEP-SIZE NLMS
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部